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Jülich Centre for Neutron Science
Forschungszentrum Jülich
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1 Introduction and theoretical basics

This summary is thought as a repetition of the basic knowledge needed for this experiment. It
is expected to be familiar with the different types of the crystal lattices, the terms of unit cell
and basis as well as the use of Miller’s indices.

1.1 Inelastic scattering cross section

In the experiment a sample is illuminated by a monoenergetic (energy Ei) neutron beam with a
direction (wave vector ki). The ratio of the intensity scattered in a decent solid angle dΩ (wave
vector kf ) with the energy Ef + dE to the intensity of the incoming beam is the differential
scattering cross section

IΩ,Ef

I0

=
dσ2

dΩ dEf
. (1)

The scattering of the neutrons at the nuclei is handled within the quantum mechanics as a
weak perturbation of the system. The calculation can be found as ”Fermi’s golden rule” in the
textbooks.Reference: [6]

Generally, the scattering cross section is:

d3σ

dΩ dEf
=
|kf |
|ki|

S(Q, ω). (2)

The scattering function S depends on the momentum transfer1 Q = ki − kf and the energy
transfer, to be written in a change of the wave length ω = E

~ . The relation between ω or E
and |kf | is of squared, therefore the scattering cross section used in 1.9 is for the following
calculations (Reference: [11], chap.4):

d3σ

dkf x dkf y dkf z
∝ 1

|ki|
S(Q, ω). (3)

We start with elastic scattering (|ki| = |kf |). We will find that this is given by the assumption
of a time-independent distribution of the scattering centers.

1.2 Elastic scattering function

We describe the incoming neutron beam as a plane wave. Its amplitude at every time t depends
on the site P = R + r (see Fig. 1):

AP = A0 e
i[ki·(R+r)]−iω0t. (4)

It excited the scattering centers to emit spherical waves with an amplitudeA′, having a fix phase
relation to the original (incident) wave.

A′P = ρ(P ) AP , (5)

1 Really: the change of the wave vector. In units of ~ this is exactly the momentum transfer.
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Figure 1: General scattering geometry and notation

ρ(r) is the local scattering density with the unit m−2. No multiple scattering occurs 2. At a site
B we get for a wave starting from a site P :

AB(r, t) = AP (r, t) ρ(r)
ei[kf ·(R

′−r)]

|R′ − r|
(6)

where kf is pointing into the direction of (R′ − r)t.

We assume the distance between R and R′ to be large compared to r.

AB(r, t) = AP (r, t) ρ(r)
1

R′
ei[kf ·(R

′−r)] (7)

with the same direction of kf for all P . After replacing AP and ordering:

AB(r, t) =
A0

R′
ei(ki·R+kf ·R′)ρ(r)e−i[(kf−ki)·r]−iωit. (8)

The first term is a constant phase factor, which is now space-independent within the sample.
The whole scattering amplitude is given by integration of the scattering region.

AB(t) ∝ e−iωit
∫
V

ρ(r)e−i[(kf−ki)·r]dr. (9)

As long as ρ is time-independent, the time dependence of AB includes only the frequency ωi
(elastic scattering).

In the experiment, we do not have access to the amplitude of the wave but only to the square of
it. For the scattering function one gets:

S(Q) ∝
∣∣∣∣∫
V

ρ(r)e−iQ·rdr

∣∣∣∣2 (10)

with: Q = kf − ki. (11)

Therefore, we identify the scattering function except a factor as the square of the Fourier trans-
form of the scattering density.References: [7], [12]

2 according to the Born approximation in the quantum-mechanical scattering theory

4



1.3 Coherent vs. incoherent scattering

Restricting on the interactions with the nuclei and using thermal neutron wavelengths (≈ Å)
which are large compared to the radii of the nuclei (10−4 Å) the sample can be assumed to be
an array of point-shaped scattering centers. The scattering density follows as:

ρ(r) =
∑
i

biδ(ri − r) (12)

with the positions of the scattering centers ri and their scattering lengths bi, respectively. b
represents the amplitude of the spherical wave emitted by an atom and b̄ its average.

The scattering function of a material with identical atoms in regular order is again a regular
point lattice (see next chapter). But, a normal crystal is a mixture of several isotopes having
different neutron scattering lengths. In this case, the interference condition is valid only for an
averaged scattering length. Taking (12) for (10), the scattering function is s

S =
(
b̄
)2
Scoh. +

(
b̄2 −

(
b̄
)2
)
Sinc.. (13)

assuming a statistical distribution of the different scattering centers. Sinc. is now independent of
the relative positions of the atoms to each other and therefore independent of the concrete struc-
ture of the sample. It is a term of background signal, independent of the scattering angle and the
sample orientation. This so-called incoherent scattering is always observed when the scatter-
ing density varies locally and non-correlated, also for point defects in the lattice and randomly
distributed spin orientations in nuclei and atomic shells. A distinguished incoherent scatterer
- almost without a coherent distribution - is vanadium which is often used for spectrometer
alignments. Reference: [12]

1.4 Reciprocal space and Brillouin-zones

The samples to be investigated are normally good coherent scatterers, it is necessary to know
Scoh.. Let’s start on a Bravais-lattice with a one-atom basis. The scattering density is:

ρ(r) =
∑
h,k,l

b δ3[(ha1 + k a2 + la3)− r], (14)

with generating lattice vectors ai. The Fourier transform of such a function is:

ρ̃(q) =
1√
2π

∫ ∑
h,k,l

b δ3[(ha1 + k a2 + la3)− r]e−iq·rdr (15)

=
∑
h,k,l

be−iq·[(ha1+k a2+la3)]. (16)

Summarizing for a sufficient number of indices, one gets a point lattice again, the reciprocal
lattice 3. The wave vector space is named the reciprocal space.

3 It can be shown that the reciprocal lattice of a Bravais lattice is a Bravais lattice again having all symmetry
elements of the original lattice.
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Figure 2: 2-dimensional point lattice in the real and reciprocal spaces. The first Brillouin
zone is plotted around a reciprocal lattice point. Note the generating vectors of both lattices
satisfying equation (17).

By

gi · aj = 2πδi,j (17)

we get the generating vectors gi of the reciprocal space from the original vectors 4: The re-
ciprocal lattice vector g1 is perpendicular to the vectors a2 and a3 with an absolute value of:

2π

(a1 cos^(a1, (a2 × a3)))
. (18)

In the simple case of the sc lattice all real lattice vectors are pairwise perpendicular. Thus, the
directions of the reciprocal space are identical to that of the real space. But, the dimensions of
the reciprocal lattice as well as of the wave vectors are’m−1’ (see eq. (17)).

In (10) we identified the scattering function as the square of the Fourier transformed of the
scattering density. It is different from zero if

Q = G = hg1 + kg2 + lg3 (Laue condition). (19)

Wave vectors satisfying this condition built the Bragg reflections in the sample spectrum and
are enumerated by the indices h, k, l.

fcc and bcc lattices are normally not presented by their primitive unit cells but as sc lattices with
a polyatomic basis. Therefore, not all reflections of the sc lattice occur. This is described by
the structure factor. Here eq. (17) does not give the generating wave vectors of the reciprocal
space.

A useful construction to work with the wave vectors of the reciprocal space is the construction
of the Brillouin zones. For this, in the reciprocal lattice the perpendicular bisector planes of the
vectors connecting one lattice point with all the others are created. 5 (see also Fig. 2).

4 The definition (17) is used in physics. The 2π factor depends on the definition of the wave vector and is sometimes
omitted, especially in crystallography.
5 All incoming plane waves with wave vectors ending at the Brillouin zone boundary satisfy the elastic scattering
condition (19) since incident and final wave vector are of the same length.
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4π/a

(a) The reciprocal lattice of a fcc crystals is
a bcc lattice. The first two Brillouin
zones are drawn. If the crystal consists
of two interlocking fcc lattices (i.e.
Silicon), not all reflections occur.

(b) Laue picture of a Silicon crystal
([110]-direction) irradiated by polychromatic
x-rays. We get a two-dimensional projection
of the reciprocal lattice up to decent indices,
depending on the minimum wavelength of
the x-rays.

Figure 3: 3-dimensional view of the elastic scattering.

Remark: The construction of the Brillouin zones is of the basis Bravais lattice. I.e.,
Germanium and Silicon have a fcc lattice with a 2-atomic basis. The scattering function in
influenced in a way that several refections vanish, others are amplified. The reciprocal lattice
stays to be of fcc symmetry.

The first Brillouin zones around the points of the reciprocal lattice fill the reciprocal space. By
this, points of high symmetry are easy to identify. They are used to be named by letters (see
Fig. 6).

References: [7] Chapter about scattering on periodic structures.

1.5 Inelastic scattering processes

We allow a change of the scattering density ρ with time now.

ρ(r(t)) ∝
∑
n

δ(rn(t)− r). (20)

The atoms are oscillating with weak amplitudes around their average position.

rn(t) = rn + un(t). (21)

Assuming the forces between neighboring atoms to be proportional to their displacement (har-
monic approximation) every oscillation state of the crystal can be described as a superposition
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of plane waves with wave vectors q. 6:

un(t) =
∑
q

u e±i(q·rn−ω(q) t). (22)

The scattering amplitude is from (10) and (20):

A ∝ e−iωit
∑
n

e−iQ·rn(t). (23)

Take eq. (21) to develop the exponential function for small u’s:

A ∝ e−iωit
∑
n

e−iQ·rne−iQ·un(t) (24)

≈ e−iωit
∑
n

e−iQ·rn [1− iQ · u(t)] (25)

= e−iωit
∑
n,q

e−iQ·rn − iQ · u e−iQ·rne±i(q·rn−ω(q) t). (26)

In (26) we find in addition to the terms from elastic scattering for every q a term:∑
n

iQ · u e−i[(Q∓q)·rn]−i[ωi±ω(q)]t. (27)

Thus, there are scattering waves with frequencies shifted from the frequency of the primary
wave just by the frequency of the crystal oscillations. In addition, in analogy to the elastic case,
the sum in (27) is non-zero only if eq.

Q = ki − kf = G∓ q (28)

is satisfied by a reciprocal wave vector G. The condition for the frequency is:

ωf = ωi ± ω(q). (29)

Multiplying both equations with ~ and choosing G = 0 gives:

~∆ω ∓ ~ω(q) =0, (30)
~kf − ~ki ∓ ~q =0. (31)

This is just the quantum-mechanical description of the momentum and energy conservation
for neutron scattering on a particle generally called a phonon. The analogy is confirmed also
quantum-mechanically.

See i.e. [1] appendix N.

As to be seen from the equation, the momentum of a phonon is determined only modulo to
one reciprocal lattice vector. Really two lattice oscillations of wave vectors differing by one

8



[000]

kf

ki

2Θs

qQ

[220]

kf

ki

2Θs

q

Q

[004]

Figure 4: Scattering diagrams for inelastic scattering of neutrons on a fcc crystal. The recip-
rocal [11̄0] plane is drawn. Notation similar to the text. The energy transfer is represented by
the different lengths of ki and kf

a

Figure 5: Equivalence of lattice vibrations taken from [9]: Both of the shown waveslead to the
same displacement of the atoms from their avarage position. They are physically identical. All
waves with a wavelength λ1 smaller than 2a (white line) can be reduced to these with λ2 ≥ 2a
(black line). 2π

λ1
= 2π

λ2
− n2π

a
, with n2π

a
the length of a reciprocal lattice vector. The waves with

λ ≥ 2a are just these with wavevectors in the first Brilloin zone.
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reciprocal lattice vectors are similar by physics (see fig. 5). Thus, the wave vector of every
phonon can be related to the nearest reciprocal lattice point and the theoretical considerations
are restricted to the 1. Brillouin zone. The probability of the excitation of a phonon scales with
the intensity of the nearest elastic reflection. See for example fig. 9. Phonons are therefore
particles with a quasi-momentum 7.

Reference: see [7] chapter 4

For the visualization of the inelastic scattering process one can assume that the neutron initiates
an oscillation in the crystal. By this, the neutron looses energy or gains energy when scattered
on an oscillating atom which results in the annihilation of this oscillation. For the energy loss, a
decent mode has to be already excited in the crystal. Such a consideration of the energies leads
to the ”‘detailed balance”’ principle:

S(Q,−ω) = e
− ~ω
kBT S(Q, ω) (32)

with the Boltzmann factor kBT . At room temperature, both sides are almost equivalent.

What is now the advantage of neutrons for the study of lattice vibrations, compared to x-rays
- which are easier to handle and available with much higher flux, especially at synchrotron
sources where in addition higher brilliance is achieved? The energy of thermal neutrons is
in average circa 30 meV which is related to a wavevector of 3.8 Å

−1. The dimensions of the
reciprocal space are given by eq. (17), i.e. circa 2 Å

−1 for Germanium. X-rays with similar
wave vectors have energies of ≈ 10 keV. The excitation of a lattice vibration with an energy of
10 meV would be according to a relative energy change of 10−6 for photons. For neutrons the
change is in the order of kinetic energies.

1.6 Dispersion relation

One purpose of the experiment is to determine the correlation ω(q) experimentally. ω(q) is the
(phonon) dispersion relation. It contains all information about the dynamic properties of the
studied material. Physical quantities as velocity of sound and the phonon contribution of the
heat capacity can be deduced from it. But, also the dominating interaction potentials between
the atoms can be derived. For the visualization the 3-dimensional relation is drawn for several
directions of symmetry abreast.

The principle of ω(q) can be shown at an one-dimensional atomic chain. See the textbook
derivation (i.e. [1]). The generalization is done by the transition to parallel crystal planes oscil-
lating contrary.

6 This is the first-order Taylor series approximation of anharmonic potentials.
7 The real momentum transfer of the neutrons is - as for elastic scattering - absorbed by the whole sample and is
not relevant due to the mass ratio.
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Figure 6: Dispersion relation of Germanium at 80 K taken from [10]. Points of exceptionally
high symmetry are indicated by letters. (small picture).

1.7 Transverse and longitudinal phonons

As known from mechanics, for propagating waves the displacement of the single atoms can
be chosen parallel (longitudinal) or perpendicular (transversal) to the propagation direction. In
general, both excitation have different energies. For every q there are two transverse phonons
with polarizations perpendicular to each other, but only one of them is in the scattering plane.
In crystals of high symmetry these excitations are degenerated in energy. A crystal with a one-
atomic basis has three dispersion modes. For a basis of n atoms,this number increases to 3n (3
acoustic (E = 0 in the center of the B-zone) and 3(n − 1) optical modes (E 6= 0 at q = 0)).
Fig. 6 shows this for the simple case of Germanium.

Reference: [9]

How can transverse and longitudinal oscillations to be distinguished in the experiment? The
equation of the inelastic scattering function (27) contains the scalar product Q · u with the po-
larization of the wave u (fig. 7). Thus, an oscillation is only excited for Q with a component in
the polarization direction, in analogy to the classical assumption. Fig. 4 shows the measurement
of a longitudinal and of a transverse phonon. The wave vector q points in the same direction
for both measurements.
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(b) and transversal oscillations

Figure 7: Note: The momentum transfer of the neutrons Q points always into the direction of
the real displacements ui.

1.8 What is measured - what can we conclude for the sample

We look now at the correlation between the configuration of the spectrometer and the variables
Q and ∆E. The absolute values of ki and kf (incident and outgoing wave vectors) are deter-
mined by the scattering angles at the monochromator and the analyzer crystals 2Θm and 2Θa,
respectively 8. Having neutron waves we need

Ekin =
(~ kn)2

2m
, (33)

with p the momentum and m the mass of the neutron.
Thus, we know also

ω =
∆E

~
= ~
|ki|2 − |kf |2

2mn

. (34)

The orientation of the sample determines the direction of ki relatively to the crystal lattice
(characterized by the sample rotation angle ωs) and the scattering plane. Within the scattering
plane 2Θs determines the direction of kf . Q results from eq. (11).

Conversely, we do not get the configuration of the instrument from ω and Q.

In standard experiments, the scans are done at constant Q or constant energy transfer ∆E.
While for very stiff dispersion modes, in the vicinity of the Brillouin zone center, constant-E is
chosen (Fig. 8(b)), most of the Brillouin zone is normally measured with const.-Q (Fig. 8(a)).

8 2Θm and 2Θa are the relevant numbers. The rotation of the crystals Θm and Θa are fixed in relation to 2Θm/2
and 2Θa/2.
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Figure 8: Examples for different scans (scattering triangles and dispersion relation.)
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a)

c)

b)

q

q

Qa = Qc

Qb

Figure 9: The same phonon excitation measured in different ways:
(a)↔(b): Measurements at different elastic peaks but with identical |ki| and |kf |.
(a)↔(c): Identical position of the reciprocal space measured with different ki.
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Please take time and think about the reason and how the different angles change during the two
measurements shown in the figures.

As demonstrated in fig. 9, the lengths of ki or kf can be fixed. This is a way to change the
resolution of the instrument optimizing the measurement for different problems.

1.9 Normalization of the counting rates

Planning an experiment, it seems to be native to count the scattered neutrons in the detector
at every point for a useful time. But, the counting rate ZDet depends not only on the scatter-
ing cross section. It also depends on instrument parameters which possibly change during the
measurement or within a scan.

ZDet ∝ Iprim(ki) ·RMono(|ki|)
d3σ

dkf x dkf y dkf z
RAnal(|kf |) · PDet.(|kf |) (35)

= Iprim(ki) ·RMono(|ki|)
1

|ki|
S(Q, ω) RAnal(|kf |) · PDet.(|kf |). (36)

with R(|k|) the reflectivities of the Bragg crystals, PDet.(|kf |) the efficiency of the detector and
Iprim.(|ki|) the incident intensity at the used energy.

In our experiment here we are especially interested at the positions of the phonon excitations in
the Q-ωspace and not too much in their intensities. We therefore do not ask for the compara-
bility of different scans. We only need sufficient count rates within the scans and possibly the
normalization of different points in a scan to determine the peak position in a right way.

We use a monitor detector usually mounted after the monochromator and before the sample.
The probability to be detected is for neutrons with a velocity v proportional to the time t the
neutrons stay in a detector (monitor) of the width d:

t =
d

v
=
dmn

~ |k|
(37)

One expects as monitor count-rate:

ZMono ∝ Iprim(ki) ·RMono(|ki|)
1

|ki|
(38)

To perform a measurement, events are counted in the detector until a particular number of
monitor counts is reached. The real count rate in the detector with monitor Z ′Det is:

Z ′Det =
ZDet

ZMoni

∝ S(Q, ω) RAnal(|kf |) · PDet.(kf ). (39)

For constant |kf |, as illustrated in fig. 8(a)(right), this dependence vanishes. This is therefore the
common mode. If |kf | is varied by any reasons during the scan, the corresponding corrections
have to be done for the data analysis.
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1.10 Resolution function

Up to now we did not consider the fact that at every point of the Q-ω-space the spectrometer is
pointing to the measured intensity is scattered in a finite volume around this point. A sharp (δ-)
peak in the scattering function at (Q0, ω0) gives a measured signal of the form:

ZDet(Q, ω) ∝ R(Q−Q0, ω − ω0). (40)

R is the resolution function and depends on the configuration of the spectrometer only. Ordinary
R is assumed to be Gaussian in its components.

The measured signal results from the convolution:

ZDet(Q, ω) ∝
∫
S(Q′, ω′) R(Q′ −Q, ω′ − ω) dQ′dω′. (41)

For illustration take a contour line of the resolution function (exactly: the 2-dimensional projec-
tion of the resolution function). It is normally elliptically and shows the region of the scattering
function ’seen’ by the instrument. In fig. 10 the projections of the resolution function are plotted
into the dispersion relation, at the right the intensities to be expected, respectively. A measure-
ment is characterized to be focused if the short axes of the resolution ellipsoid is perpendicular
to the dispersion surface (to be measured).

It is important to understand in which cases a sharp resolution function is helpful or not. E. g.,
see a const.-Q-scan through a sharp ’horizontal’ dispersion surface:

S(Q, ω) = S0 δ(ω − ω0). (42)

The measurement is focused, i.e.

R(Q, ω) = e−
ω2

σω ·R(Q). (43)

Eq.(41) gives:

Z(ω) ∝ e−
ω2

σω

∫
R(Q)dQ. (44)

Expanding the resolution ellipsoid in the momentum coordinates, the measured intensity in-

creases. The line width depends only on e−
ω2

σω .

Reference: [11] Chap.4

The real form of the resolution function is influenced now by several effects: The Bragg-
crystals are not of perfect lattices but have a finite mosaicity (which means it consists of several
small single crystals, and their lattice parameters have weak deviations from the average). This
’mosaicity spread’ - given by the angle ηm - broadens the Bragg peaks e.g. at the monochroma-
tor. Further influences are the finite angle resolution of the detectors, a finite size of the sample
and diverging beams.

The beam reflected at the monochromator is a bunch of wave-vectors with a distribution pm(ki),
the transmission function of the monochromator. The analyzer has to be described in analogy.
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Figure 10: Focused vs. unfocused measurement.

To calculate the resolution function of the spectrometer, the two transmission functions have to
be convoluted with respect to 2Θs. This simulation can be done by software tools. You will get
some qualitative ideas about this within the experiment.

Reference: [4]

1.11 Peak forms

We learned: For sharp peaks in the scattering function we get a Gaussian signal in the mea-
surement. This will be found in most of the experiments. However, some compounds exhibit
broadened phonon resonances, so-called soft modes. They are originated by phonon-phonon-
and phonon-electron-interactions 9 and result in a finite lifetime τ of the single oscillation states.
Calculating the damped harmonic oscillator the line shape is identified to be Lorentzian:

S(ω) ∝ ω2

(ω2
0 − ω2)

2
+
(
ω
τ

)2 (45)

with the line width (FWHM):

δω =
1

2τ
. (46)

The resulting signal of such a ’soft’ peak is the convolution of a Lorentzian with a Gaussian
curve called Voigt profile. This profile is not easy to be calculated mathematically. In the case
of comparable widths of the single profiles it can be sufficient to take the width of the Voigt
curve as the sum of the widths of the Gaussian and the Lorentzian contributions.

If it is necessary for the data analysis to determine the peakwidths, the resolution function has
to be deconvoluted from the measured signal. This can be done by software.

Reference: [3], [5]

9 These effects are neglected by the assumption of harmonic oscillations.
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2 Performance of the experiment

PANDA is a three axis spectrometer (TAS) at the cold source of FRM II. The first thermal TAS
was built 1954 and generally improved 1959 by Bertram N. Brockhouse at NRU Reactor in
Chalk River. For his merit in the field of inelastic neutron scattering he got the Nobel price
1994. Even if the intensities at the detector were increased by magnitudes, the instrument is
remote controlled and the safety is improved today, the general principle of the method is still
the same:

The beam of cold neutrons (energy E ≈ 5(30) meV, momentum p ≈ 1.5(4) · 10−24 kg m/s),
which has de Broglie wavelength

λ =
h

p
, (47)

or a wavevector of the length k = 2π
λ

, exits the moderator tank of the reactor through a beam
port. The neutrons enter a monochromator being of single crystals with a d-spacing d.

By the Bragg equation

nλ = 2d sin Θm (48)

the angle 2Θm defines the energy of a monochromatic neutron beam (wave vector ki, energy
Ei), which points to the sample to be investigated.

Direction and energy of the neutrons are changed at the sample following the inelastic scattering
laws. At the secondary spectrometer (analyzer) neutrons with the wave vector kf and the energy
Ef are selected by Bragg reflection at a second crystal and are counted in the detector. By this,
the momentum transfer (Q) of the neutrons to the sample as well as the energy transfer (∆E)
from the sample to the neutrons can be determined.

Q = ki − kf , ∆E = Ei − Ef . (49)

For useful statistics normally a fixed configuration of the instrument - related to a decent energy
and momentum transfer - is taken for counting at the detector. The scattering function of the
sample is therefore taken pointwise. These scans are measured at constant Q or at constant
energy E, depending on the experimental strategy (see below).

PANDA is located at the beamport SR2 in the experimental hall of FRM II and has a comparably
large neutron flux at low background. For more detail see:
http://www.mlz-garching.de/panda.

We now discuss the components of the three axis spectrometer. Photos of the main components
are collected at the gallery 22 for better understanding.

Shielding Since neutrons damage biological matter the region of the primary beam has to be
shielded. This is done by a so-called drum (in the case of PANDA blue / green colored) with
the monochromator in its centre. The drum is made of heavy concrete with a large amount of
chemically combined water, boron added. Also used are boron-treated (PE) sheets. Chemically
combined water and PE contain a large amount of hydrogen which is able to decelerate fast
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Notation:
Q Neutron source
M Monochromator
S Sample table
A Analyzer
D Detector
α1

collimators
α2

α3

α4

2Θm angles of the
Spectrometer-
axis

2Θs

2Θa

Abs Shielding
Sel Selector
Mob Mobile blocks
Sh Primary shutter

Figure 11: Schematic design of a three axis spectrometer.
Remark: all angles are counted in the region [−180◦, 180◦]. (0◦ is directed in beam,

positive angles are counter-clockwise.) 2Θs is therefore positive.

neutrons. Boron as a large absorption coefficient for cold and thermal neutrons 10, and the
isotope emerging at the neutron capture is not radioactive. But, normally materials are activated
by the nuclear reactions and therefore activated (and the reactor emits hard Gamma radiation
also if the primary shutter is closed), so the shielding has to be opened only after measurements
of the remaining radiation even if the reactor is down. A part of the installation is shown here
at the photos. The drum is made to shield γ-radiation as well as neutrons.

During the movement of the monochromator axes a ring of the shielding which contains the
beam channel for the beam scatered at the monochromator is entrained. To avoid a closing of
the primary beam during the ongoing rotation, the ring partially consists of 11 so-called mobile
blocks (made of the same concrete as the ring) which are moved by an automatic control from
one side of the opening to the the other. The geometry and the control ensure a proper shielding
where necessary (see fig.11).

Monochromator In the rotation centre of the shielding the monochromator is positioned. It
consists of 121 single crystals of pyrolytic graphite (PG) mounted on a crystal holder. The
crystal holder and therfore the grapite lattice planes are rotated by the angle Θm to the primary
beam. The intensity of the monochromatic beam scattered at the angle 2Θm

11 depends on the
lattice parameter of the monochromator material (here PG) and on the incoming angle..

To avoid contamination of higher-order Bragg reflection in the incoming beam, n = 2, 3 . . .
(Gl. (48)), filter materials are positioned between monochromator and sample. In the case of

10 Typical reaction: 10
5 B + 1

0n→ 7
3Li + 4

2He + 2.8 Mev
11 Remark: Sometimes the angles Θm, Θs and Θa are named α1 to α3.
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l

d

α

Figure 12: Drawing of a Soller collimator. The divergence of the outgoing beam is
tan(α/2) = d/l, which is in the example ca. 18◦. On PANDA the collimation can be chosen
between 15 and 80 minutes.

PANDA this is polycrystalline boron or, sometimes, pyrolytic graphite.

Maximum intensity at sample and detector can be achieved by focusing the monochromator and
the analyzer in horizontal and vertical direction. Here the 121 monochromator (55 analyzer)
crystals are curved in both directions by complex mechanics to get the crystal surfaces into
a paraboloid-like shape. The radius of the curvature depends on the neutron wavelength. By
taking into account the distances also a focus of the momentums is possible.

Sample table The sample is mounted on a table which can be moved on air-pressure. In
addition to motors rotating the sample and the analyzer/detector around the sample - giving
Θs and the scattering angle 2Θs, the sample orientation can be adjusted by goniometers and
translation stages. For studies of magnetism, the sample is normally positioned in a cryostat or
a cryomagnet - cooling down to temperatures of 0.03 K and appying fields up to 13.2 T.

Analyzer The analyzer is also located in a shielding, but here the reason is to decrease the
background in the detector. The crystal holder located again on a goniometer and translation
stages allows a horizontal focus of the analyzer, the crystals are mounted to have a fixed vertical
focus. The crystals are at the angle Θa to the beam, the detector is rotated by 2Θa.

Detector The neutrons are counted by a beamtube, filled with 3He under high pressure (ca 10
bar). A neutron can be trapped by a 3He nucleus and converted to 4He. The emitted γ quant
ionizate the gas and is detected like in a Geiger-Müller counter. This allows to count ca. 90%
of the incoming neutrons.

Diaphragms, collimators and attenuators In addition to the already described parts several
components are needed in the beam path dor beam conditioning. For example variable di-
aphragms (slits) are installed before and after the sample which are adjusted to the sample size
to decrease the background. A secondary shutter is mounted after the monochromator. More
diaphragms are with the primary shutter in the reactor wall and between the primary shutter and
the monochromator.

Beyond that in every part of the beam path so-called Soller collimators can be applied. It con-
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tains of ca. 20 cm long, coated with white GdO2 foils, which are exactly parallel and therefore
limit the divergence of the beam . The value of the divergence is described by the angle α (see
fig. 12). Collimators with α = 15′ to α = 60′ are available. Small divergence corresponds with
high resolution but small intensity. The primary collimators are placed in the primary shielding
and are changed automatically, the others have to be changed by hand (motorization planned).
The beam size is limited only horizontally, i.e. within the scattering plane. For increase of
intensity we normally allow a large divergence of the beam in the direction perpendicular to the
scattering plane.

Sometimes, e.g. for alignment, the detector is in the straight beam or Bragg reflections have
a very large intensity. To avoid a saturation of the detectors, the incoming beam ist attenuated
by PE-plates of different thicknesses which can moved into the beam (and combined) automat-
ically.

Monitor To compare or to combine data from different scans or measurements the intensities
are normalized to an intensity counted by the monitor in the primary beam. Its signal is propor-
tional to the incoming intensity. This is also important for energy scans, where the incoming
intensity changes with 2Θm due to the energy-dependent spectrum. Also different reactor power
can be corrected in this way (see paragraph 1.9).

Goniometer Monochromator, analyzer and sample are placed on 2-axis goniometers. This
allows tilts around two perpendicular to each other which meet in the centre of the beam. So
the sample does not move out of the beam centre during the tilt. The available angles are
limited (±15◦), the sample can be adjusted but has to be pre-oriented before measuring on the
three-axis instrument. It is also possible to translate the sample a few millimeters horizontally
and vertically.

Cover page: Overview over PANDA
From left: Monochromator shielding, sample table with 15T cryomagnet, analyzer box and
detector shielding.

Figure 13: (Following page) Components of PANDA taken in different phases of the construc-
tion.
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(a) Side view into the (opened)
Monochromator shielding onto the
PG-monochromator.

(b) PG-analyzer in the (opened) analyzer box.
The horizontal curvature is changed by
rotating the individual segments.

(c) Detailed view onto the sample table with
vacuum chamber. From bottom: Rotation
table, xy-stage, goniometer, z-stage

(d) Soller collimators in the automatic changer
for α1 (in the primary beam.)

(e) Typical sample mounting for use of
cryostat.

(f) Detector tubes to be built into the detector
shielding
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3 Experiment

PANDA is a complex research instrument, where normally measurements on samples at very low
temperature, high magnetic fields and / or high pressure are performed. Phonons for example
are measured to learn about the interaction potentials in solids. Measurements of spin wave
dispersions contribute to determine magnetic interactions.

The goal of this practice is to give inside to the potential of neutron scattering on a three-axis
spectrometer. To get results, you have to understand the functionality of the instrument. This
can include the alignment of the instrument and the sample. Some data can be taken on a well-
known sample, e.g. lead, which can be measured at room temperature (necessary due to the
limited time of the practice. A normal experiment needs several days.)

1. Preparation

• Gather theoretical basics.

• Generate a strategy for the measurements and a plan of the experiment.

• Safety instruction at the instrument PANDA.

2. Alignment

• Proof of the instrument alignment by scans of the monochromator or analyzer axis

• Determination of the (energy) resolution of the spectrometer for (min.) three dif-
ferent wave vectors by measuring of the incoherent elastic intensity on vanadium.
Choose an appropriate configuration for the following measurements.

• Alignment of the sample, define the scattering plane, optimize background.

• Perform control scans and learn the use of the user interface on PANDA.

3. Measurements

• Perform the planned scans to determine the resolution ellipsoid.

• Measure (min.) one mode of the dispersion relation of lead by different scans.

4 Report

After the experiment you have to report your work. Please explain the experiment and your
work in a short way to show how you understand the aim of the different steps. You can prepare
this by doing notes during the experiment.

Please analyze the data and interpret it. It is not necessary to repeat the theoretic aspects already
discussed in front of the experiment. But your report should be conclusive.

Please:

• Show the measured energy resolution depending on the wave vector. Explain your choice.
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• Determine the direction of the resolution ellipsoid, add it to a scheme of the dispersion
and show the single scans.

• For the measurements of lead, plot the measured points with the error bars into a disper-
sion relation(s) and compare to references. Explain how different scan types influence the
result.

Finally: please give us a short feedback about the preparation, experiment and support. This can
also be done after the experiment. We like to give you an impression about neutron scattering
experiments even if practices are complicated. A feedback will help us to improve it for future
students.

P.S. Do not forget ruler and calculator.
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Internet resources

http://http://www.mlz-garching.de/panda
”PANDA” homepage.

http://www.env-it.de/umweltdaten/
Environmental data from the federal Ministry for the Environment, Nature Conservation
and Nuclear Safety.

http://www.umweltdaten.de/utk/kapitel22/E-22-1-2.pdf
Estimations of natural and civil exposure in Germany from 1999.

25

http://http://www.mlz-garching.de/panda
http://www.env-it.de/umweltdaten/
http://www.umweltdaten.de/utk/kapitel22/E-22-1-2.pdf


Contact

PANDA
Phone: 089/289-14749

Web: http://www.mlz-garching.de/panda

Astrid Schneidewind

JCNS at Maier-Leibnitz Zentrum Garching, Forschungszentrum Jülich GmbH

Phone: 089/289-14749

e-Mail: Astrid.Schneidewind@frm2.tum.de

Petr Cermak
Phone: 089/289-11773

e-Mail: p.cermak@fz-juelich.de
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