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Exercise .

When investigating an object with small-angle scattering, the Patterson function yields useful statistical
information. It is defined by

P (r) =

∫
ρ(r1)ρ(r2) dV, with r = r1 − r2,

where ρ is the scattering-length density function of the object. The correlation function γ(r) is the
orientational average of the Patterson function P (r), which is in two dimensions

γ(r) =
1

2π

∫ 2π

0
P (r) dϕ . ()

It answers the question: given that there is an atom of the particle at some place, what is the probability
that the atoms in the distance r are also situated inside the particle?

Numerically calculate the (two-dimensional) Patterson function and subsequently the characteristic
function γ0(r) =

γ(r)
γ(0) of the following objects (black area ρ = 1, white area ρ = 0)

Why is γ(r ≥ D) = 0 when D is the largest possible distance of two atoms inside the particle? What
is the connection between Patterson function and scattering signal of the object?

Solution. The Patterson function corresponds to a convolution of the scattering length density ρ(r)
with ρ(−r). This operation is called Autocorrelation and it describes the correlation of a function with
itself translated by a distance r′. In our case, the function corresponds to the particle shape. We get
the following Patterson functions (Matlab function conv)


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Certain characteristics of the particle shape are still visible in this representation. In the next step we
perform the radial integration around the centre to get the characteristic function of the particle

0 5 10 15
0

0.2

0.4

0.6

0.8

1
Characteristic Functions

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

The characteristic function is important for interpreting scattering data, since the Wiener-Khinchin the-
orem states that the Fourier transform of the patterson function is equal the squared Fourier transform
of the scattering length density, e.g. the scattering signal

|F(ρ)|2 = |F(P )|.

Consequently, we can calculate the radial averaged scattering signal by performing the radial Fourier
transform of the characteristic

I(Q) = 4π

∫ D

0
γ(r)

sin(Qr)

Q
r dr.
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As a cross check we calculate the scattering signal in both ways, from the Patterson function and the
squared Fourier transform of the scattering length density





Fourier transform of the Patterson function
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Exercise .

To obtain Porod’s law, an intermediate step is to integrate the central formula for the scattered in-
tensity I as a function of the absolute value of the scattering vector Q,

I(Q) = 4π

∫ D

0
γ(r)

sin(Qr)

Q
r dr . ()

Solve the integral.

Solution. The integration has to be done in parts,

I(Q) = 4π

∫ D

0
γ(r)r︸ ︷︷ ︸
u

sin(Qr)

Q︸ ︷︷ ︸
v′

dr ()

yielding

I(Q) = 4π


[
γ(r)r

(
− cos(Qr)

Q2

)]D
0︸ ︷︷ ︸

=0

−
∫ D

0

(
γ′(r)r + γ(r)

)(− cos(Qr)

Q2

)
dr

 . ()

The first term is zero because γ(D) = 0. One step further, one arrives at

I(Q) = −4π
{
−γ′(D)D sin(QD)

Q3
+

∫ D

0
γ′′(r)r

sin(Qr)

Q3
dr + 2

∫ D

0
γ′(r)

sin(Qr)

Q3
dr

}
. ()

In the last step, we use that
(rγ(r))′′′ = 3γ′′(r) + rγ′′′(r) ()





to obtain

I(Q) = − 8π

Q4
γ′(0) +

4π

Q3
Dγ′(D) sin(QD)

+
4π

Q4

[
2γ′(D) +Dγ′′(D)

]
cos(QD)

− 4π

Q4

∫ D

0
(rγ(r))′′′ cos(Qr) dr . ()

Exercise .

Consider an emulsion of hexane droplets (diameter about  nm) in water, stabilized by the (proto-
nated) phospholipid DMPC. Hexane (CH) has a density of  kg/m, Hexane-d (CD)  kg/m,
water (HO)  kg/m, and heavy water (DO)  kg/m.

The aim is to obtain as much information as possible about the structure of the emulsion using small
angle neutron scattering.

. Which typical distances can be found in the sample and which of them should be observable by
SANS? Assume in the following that the concentration of the emulsion droplets is very small.

. What are the contributions of coherent and incoherent scattering, respectively?

. In which range can you vary the scattering length density (SLD) of water and hexane by mixing
protonated and deuterated substances?

. How would you choose the scattering length densities if you would like to determine the thickness
of the stabilizer layer?

Solution. . In water: O–H, H-(-O-)-H, HO–HO.

In hexane: C–H, C–C, H-(-C-)-H, H-(-C–C-)-H, . . . , hexane–hexane

In the emulsifier: many intramolecular, length of molecule (*), molecule–molecule





In the emulsion: size of the droplets (*), distance of the droplets (*)

The distances with a (*) are in the nm–µm range, therefore candidates for SAS.

. Coherent: structure, incoherent: no structural information, Q-independent background

. The SLD is calculated as

SLD = bcoh

[
fm

molecule

]
·
6.022 · 1023

[molecules
mol

]
M
[ g

mol

] ·
ρ
[

kg
m3

]
10−3

[
kg
g

] . ()

For bcoh, we set the sum over all coherent scattering lengths of the atoms inside the molecule.
With the chemical composition CHNOP for DMPC we obtain

molecule ρ
[

kg
m3

]
M
[ g

mol

]
bcoh

[ fm
molecule

]
SLD(n)

[
10−7Å−2

]
CH  . -. -.
CD  . . .
DMPC  . . .
HO  . -. -.
DO  . . .

As a side note: to obtain the scattering length for X-rays, one would sum over all electrons in the
molecule each of which has the classical electron radius re = 2.81 fm as scattering length.

There are three main possibilities:

. In = Out 6= DMPC
Achieved by In: % CD, Out: .%HO & .%DO

. In = Out = 
Achieved by In: .% CH & .% CD, Out: .% HO & .% DO

. In = DMPC 6= Out. . .
Achieved by: In: .% CH & .% CD, Out: % DO
. . . and a second measurement with In 6= DMPC = Out
Achieved by: In: % CD, Out: .% HO & .% DO

The first possibility is pretty much straight-forward, only avoiding an additional signal from the inner
sphere by choosing its SLD equal to the outside. The second avoids any coherent scattering from the
uninteresting phases. This can be advantageous if they exhibit inner structures which are on the same
length scale as the sample. The third procedure has the advantage that one measures two times a very
simple geometric form (a sphere) instead of one time a complicated (a spherical shell) and makes the
data evaluation easier.




