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EXERCISE 3.1

The potential
U(r,ϑ,ϕ)=−U0Θ(R− r)

is called a hard sphere potential with radius R. (Θ(x) is the Heaviside step function, which is
defined to be zero for x < 0 and unity for x ≥ 0.)

1. Calculate the differential and the total cross section of scattering from this potential.

2. Using small-angle neutron scattering, a biologist would like to measure the diameter of
spherical micelles (aggregated “clusters” of molecules in a solvent). What is the form factor
F(QR) (i.e. the Q-dependent part of the differential scattering cross section) of one such
micelle under the assumption that it can be approximated by a homogeneous sphere with
a radius of 200 nm?

3. For small values of QR, the form factor can be Taylor-expanded. What is the resulting
behavior?

4. Plot the form factor (versus QR) on a log-log scale. For large values of QR, what is the
behavior of F(QR) when one averages over the oscillations?

5. What happens (qualitatively) when the sphere is placed in a solvent? What happens when
there are multiple spheres present?

Solution. The scattering amplitude is given by

f (~Q)=− m
2πħ2

∫
d3rU(~r) exp(−i~Q ·~r),

or, in spherical coordinates,

f (Q)=− m
2πħ2

∫
dr d(cosϑ)dϕ r2U(r) exp(−iQr cosϑ).

Since the potential is spherically symmetric, we can use ϑ as the angle between ~Q and~r in the
exponential because we can select the coordinate system freely, so that ~Q is along the z axis.
Inserting our given potential and doing the trivial ϕ integration we get

f (Q)=− m
2πħ2 (−2πU0)

∫ ∞

0
dr r2Θ(R− r)

∫ 1

−1
d(cosϑ) exp(−iQr cosϑ).
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The integration over cosϑ is also easy:

f (Q)= mU0

ħ2

∫ ∞

0
dr r2Θ(R− r)

1
−iQr

(exp(−iQr)−exp(iQr)) .

Now we replace the exponential representation of the sine and resolve the Θ function by adjust-
ing the integration limits:

f (Q)= 2mU0

ħ2
1
Q

∫ R

0
dr rsin(Qr).

f (Q)= 2mU0

ħ2
1
Q

[
sinQr

Q2 − r cosQr
Q

]R

0
= 2mU0

ħ2
sinQR−QR cosQR

Q3 .

The final step is to rewrite this a bit:

f (Q)= mU0

2πħ2
4πR3

3
3(sinQR−QR cosQR)

(QR)3 = ρ ·Vs ·3sinQR−QR cosQR
(QR)3 ,

where ρ = mU0/2πħ2 is the “scattering length density” (SLD) and Vs the volume of the sphere.
Note that the SLD definition matches well with the Fermi pseudopotential used for scattering at
single nuclei: the singular bδ(r) is replaced by an ρ(r) extended over the sphere. This is sensible
because in small angle scattering, we are looking at very large structures and so cannot resolve
individual scattering centers inside the spheres any more.
The differential cross section dσ/dΩ is simply given by | f (Q)|2.
The total cross section is obtained by integrating over all solid angle. For this, we need to
express dΩ in terms of Q:

Q = 2ksin
θ

2
=⇒ dQ

dθ
= kcos

θ

2

=⇒ dΩ= 2πdθsinθ = 2π
dQ

kcos θ
2

sinθ = 2πdQ
2sin θ

2

k
= 2π

Q
k2 dQ.

The integration now gives

σ=
∫
Ω

dΩ
dσ
dΩ

=
∫ 2k

0
dQ

2πQ
k2 | f (Q)|2;

note that we integrate in Q from 0 to 2k, which is the maximum momentum transfer (a backscat-
tering process). Inserting f (Q) gives

σ=
∫ 2k

0
dQ

2πQ
k2 9ρ2V 2 (sinQR−QR cosQR)2

(QR)6 = 18πρ2V 2

(kR)2

∫ 2kR

0
du

sin2 u−2usinucosu+u2 cos2 u
u5

with the substitution u = kR, and solving the integral we have

σ= 9πρ2V 2

2(kR)2

[
1− 1

(2kR)2 + sin4kR
(2kR)3 − sin2 2kR

(2kR)4

]
as the total scattering cross section.
The form factor for the micelle is the Q-dependent part of the differential cross section for the
hard sphere potential with R = 200nm:

F(QR)= ρ2 ·V 2
s ·9sin2 QR−2QR sinQR cosQR+Q2R2 cos2 QR

(QR)6 .
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For small values of QR, the Taylor expansion of the form factor reads

F(QR)≈ 1− (QR)2

5
,

This is called the “Guinier approximation”, and it gives information about the micelle size.
A plot of the form factor:
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The behavior for large QR, when averaging over oscillations, is ∝ (QR)−4.
With the sphere placed in a solvent, the scattering length density ρ is replaced by the SLD con-
trast between sphere and solvent ρsphere−ρsolvent. By appropriate “contrast matching” with dif-
ferent solvents (e.g. different mixtures of D2O and H2O), one can accurately determine ρsphere.
For N spheres, the form of dσ/dΩ stays the same (with a factor of N) only if the spheres are non-
interacting. In reality, they are interacting (e.g. certain sphere–sphere distances are preferred),
which leads to an additional factor in dσ/dΩ called the “structure factor”.
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EXERCISE 3.2

When investigating an object with small-angle scattering, the Patterson function yields use-
ful statistical information. It is defined by

P(r)=
∫
ρ(r1)ρ(r2) dV, with r= r1 −r2,

where ρ is the scattering-length density function of the object. The correlation function γ(r) is
the orientational average of the Patterson function P(r), which is in two dimensions

γ(r)= 1
2π

∫ 2π

0
P(r)dϕ . (1)

It answers the question: given that there is an atom of the particle at some place, what is the
probability that the atoms in the distance r are also situated inside the particle?

Numerically calculate the (two-dimensional) Patterson function and subsequently the charac-
teristic function γ0(r)= γ(r)

γ(0) of the following objects (black area ρ = 1, white area ρ = 0)

Why is γ(r ≥ D) = 0 when D is the largest possible distance of two atoms inside the particle?
What is the connection between Patterson function and scattering signal of the object?

Solution. The Patterson function corresponds to a convolution of the scattering length density
ρ(r) with ρ(−r). This operation is called Autocorrelation and it describes the correlation of a
function with itself translated by a distance r′. In our case, the function corresponds to the
particle shape. We get the following Patterson functions (Matlab function conv2)
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Certain characteristics of the particle shape are still visible in this representation. In the next
step we perform the radial integration around the centre to get the characteristic function of
the particle
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The characteristic function is important for interpreting scattering data, since the Wiener-
Khinchin theorem states that the Fourier transform of the patterson function is equal the
squared Fourier transform of the scattering length density, e.g. the scattering signal

|F (ρ)|2 = |F (P)|.

Consequently, we can calculate the radial averaged scattering signal by performing the radial
Fourier transform of the characteristic

I(Q)= 4π
∫ D

0
γ(r)

sin(Qr)
Q

rdr.
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As a cross check we calculate the scattering signal in both ways, from the Patterson function
and the squared Fourier transform of the scattering length density
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Fourier transform of the Patterson function
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