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EXERCISE 6.1

Calculate 〈u2〉T and f 2
DWF for lead (θD = 88 K), copper (θD = 315 K), and diamond (θD = 1860 K)

at T = 10 K and T = 1000 K with the low and high temperature approximations. Which mate-
rial is most useful as a monochromator? What can be done to improve the reflectivity of copper
monochromators?

Solution. The DWF form-factor contribution is given by

f 2
DWF = e−2W(Q) = e−

1
6 Q2〈ζ2〉

with the mean square atomic displacement 〈ζ2〉, which of course depends on the temperature of
the material, and can be approximated with different models.
One model is the Debye model, assuming a spectrum of excitation frequencies for N atoms given
by

Z(ω)= 9Nω2

ω3
max

,

where the cutoff frequency is expressed in terms of the Debye temperature ΘD :

ωmax = kbΘD

ħ .

For this model we get a mean square displacement of (EXERCISE 9)

〈ζ2〉 = 9ħ2

2kbΘD M
P(T)= 9kbΘD

2Mω2
max

P(T),

with a function P(T) that depends on the temperature relative to ΘD .
In the high-temperature regime, T ÀΘD , it is simply given by

P(T)= 4
T
ΘD

=⇒〈ζ2〉 = 18ħ2kbT
k2

bΘ
2
D M

.

In the low-temperature regime, T ¿ΘD , we get

P(T)= 1+4
π2

6

(
T
ΘD

)2
=⇒〈ζ2〉 = 9ħ2

2kbΘD M
+ 3π2ħ2k2

bT2

k3
bΘ

3
D M

.
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The figure shows the DWF for the given materials and temperatures:
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Pb 10 K: h92i = 0.0130 8A2

Pb 1000 K: h92i = 0.5444 8A2

Cu 10 K: h92i = 0.0110 8A2

Cu 1000 K: h92i = 0.1385 8A2

C 10 K: h92i = 0.0098 8A2

C 1000 K: h92i = 0.0002 8A2

The vertical lines indicate the first allowed Bragg reflexion, which can be used for monochro-
matizing neutrons. The most useful monochromator material obviously would be diamond.
Lead, on the other hand, is quite unsuitable. The reflectivity of copper, which is a commonly
used monochromator because it is easy to produce large good quality single crystals, benefits
strongly from cooling it down.
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EXERCISE 6.2

Prove that spin-incoherent scattering is 2
3 spin-flip scattering and 1

3 non-flip scattering. This
can be done by the following steps:

1. Start with the expression given in the lecture for b in (A.2.10), assuming a single isotope
with nuclear spin I. Express b+ and b− in the form

b+ = b+ g+(I) ·B and

b− = b+ g−(I) ·B with B = b+−b−

2I +1
,

i. e. find g+(I) and g−(I).

2. Now we want to unify g+(I) and g−(I) so that we can give a single expression for b. Do
so using the projection operator P that projects the spin of the neutron from its initial
quantization axis onto a new quantization axis in direction of ~I = (Ix, I y, Iz), which is

P(~I)= 1+ Ixσx + I yσy + Izσz = 1+~I ·σ.

The new axis ~I is the quantization axis of the nucleus (neutron and nucleus have to have
the same quantization axis to decide if they are parallel or antiparallel). σx,y,z are the
Pauli matrices and σ is a vector of the Pauli matrices.

3. This yields an expression for the scattering length of a nucleus using the mean value
of parallel and antiparallel neutron-nucleus spin alignment and the deviation thereof.
Which part of this scattering length will give rise to incoherent scattering? Write the
incoherent cross section.

4. We are now not only interested in the probability that there is some incoherent scattering
event but want to split it up in probabilities for scattering events where the neutron has
a spin when incoming |si〉 and when outgoing |s f 〉. These spin states are prepared / mea-
sured in polarizers / detectors that are sensitive in the laboratory z-direction. Therefore
the two spin states can both be either up

(1
0

)
or down

(0
1

)
. The probabilities (cross sections)

can be calculated using

σ|si〉→|s f 〉 = 4π
∣∣∣b|si〉→|s f 〉

∣∣∣2 ∝
∣∣∣〈s f |~Iσ|si〉

∣∣∣2 =
∣∣∣〈s f |Ixσx|si〉 + 〈s f |I yσy|si〉 + 〈s f |Izσz|si〉

∣∣∣2.

Calculate b|↑〉→|↑〉, b|↑〉→|↓〉,b|↓〉→|↑〉, and b|↓〉→|↓〉 as functions of the nuclear spin components
Ix, I y, and Iz.

5. Assume that the nuclei are not aligned, therefore I2
x = I2

y = I2
z to calculate the relative

frequencies of spin flip and non spin flip scattering.

Solution. 1. We start with
b = I +1

2I +1
·b++ I

2I +1
·b−,

solve for b+/−, write x ·b as b+ (x−1) ·b, express (x−1) ·b by b+ and b−:

b+ = b+ I ·B b− = b+ (−I −1) ·B
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2. We know that there are 2I +2 possibilities for the projection which yields b+ and 2I for
the one which yields b−. As we are interested in relative frequencies, they reduce to I +1
and I. The projection gives an additional

− for the antiparallel alignment. Therefore we rewrite:

b+ = b+ (I +1︸ ︷︷ ︸
P(+)

−1) ·B b− = b+ ( −I︸︷︷︸
P(−)

−1) ·B

and arrive at the unified expression

b = b+~Iσ ·B.

3. The incoherent scattering is only due to the second part. As a side note, isotope-incoherent
scattering would turn up as

b =∑
j

c j ·
(
b j +~I jσ ·B j

)
and is therefore non-flip. The incoherent cross section is

σinc = 4π
∣∣∣~Iσ ·B

∣∣∣2 = 4πB2 ·
∣∣∣~Iσ∣∣∣2 .

Note the similarity to the expression for the spin-dependent cross section given on the
exercise sheet! (No, this is no coincidence. . . )

4. The Pauli matrices are

σz =
(
1 0
0 −1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
.

Multiplying these matrices with the up (+) and down (−) vectors gives σz(±) = ±(±),
σx(±) = +(∓), and σy(±) = ±i(∓). As up and down are orthotogonal, only a few terms
survive:

b|↑〉→|↑〉 =+Iz b|↑〉→|↓〉 = Ix + iI y

b|↓〉→|↓〉 =−Iz b|↓〉→|↑〉 = Ix − iI y

5. The relative frequencies are given by the respective sums of the cross sections:

σnf =σ|↑〉→|↑〉+σ|↓〉→|↓〉 ∝|Iz|2 +|Iz|2 = 2I2
z

σsf =σ|↑〉→|↓〉+σ|↓〉→|↑〉 ∝|Ix + iI y|2 +|Ix − iI y|2 = 2(I2
x + I2

y)

It follows that
σsf = 2 ·σnf.

We have seen that the spin-flip is a phenomenon caused by two subsequent projections of
the spin of the neutron: from the lab z axis onto the polarization axis of the nucleus and
then back on the lab z axis. The scattering event itself does not flip the spin.

This makes sense as the particle we identified for the neutron-nucleus interaction, the
π0, has spin 0 and can therefore not transmit angular momentum. The lightest meson
with spin 1 is the ρ0 which is however much heavier than the pion (770 MeV compared to
135 MeV). This should result in a weaker interaction which is not observed.

4



EXERCISE 6.3

Derive the representation

G(r, t)= 1
N

∑
j, j′

∫
〈δ

(
R−r j′(0)

)
δ
(
R+r−r j(t)

)
〉dR

from the expression for the intermediate scattering function

I(Q, t)= 1
N

∑
j, j′

〈e−iQ·r j′ (0)eiQ·r j(t)〉T

using the substitution

e−iQ·r j′ (0) =
∫

e−iQ·r′δ
(
r′−r j′(0)

)
dr′.

Solution. G(r, t) is the so called space-time pair correlation function, transforming the recip-
rocal spatial space coordinates Q to real space r. With this ansatz we calculate

G(r, t)= 1
(2π)3

∫
dQ e−iQ·rI(Q, t)= 1

(2π)3

∫
dQ e−iQ·r 1

N

∑
j, j′

〈e−iQ·r j′ (0)eiQ·r j(t)〉T

= 1
N

∑
j, j′

∫
dQ e−iQ·r 〈 1

(2π)3

∫
dr′e−iQ·r′ δ

(
r′−r j′(0)

)
eiQ·r j(t)〉

T

= 1
N

∑
j, j′

∫
dr′ 〈 1

(2π)3

∫
dQ e−iQ·(r+r′−r j(t))δ

(
r′−r j′(0)

)
〉
T

= 1
N

∑
j, j′

∫
dr′ 〈δ(

r′+r−r j(t)
)
δ
(
r′−r j′(0)

)
〉
T

,

where we used ∫
dQ e−iQ·r = (2π)3δ(r)

in the last step. G(r, t) describes the correlation between the atom j′ at time t = 0 at position r′
and the atom j at a later time t at another position r′+r, i.e. the probability of having two atoms
j and j′ in a well defined spatial and temporal correlation. G(r, t) may therefore be considered
as the most general description of the statics and dynamics of condensed matter on an atomic
scale.
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