Physics with neutrons 2

Michael Leitner, michael.leitner@frm2.tum.de Summer semester 2017 Exercise sheet 7 To be discussed 2017-06-20, room C.3203

Franz Haslbeck, franz.haslbeck@frm2.tum.de

EXERCISE 7.1

Discuss and draw qualitatively the thermal occupation factors of $\langle n \rangle$ and $\langle n+1 \rangle$ for a diffusion process leading to quasi-elastic scattering and a excitation, i.e. inelastic scattering. Discuss (a) the classical limit (high temperatures, $k_B T \gg E$) and (b) the quantum limit ($T \rightarrow 0$).

Note: Quasi-elastic scattering is represented by a Gaussian of the form $e^{-\frac{\omega^2}{2\sigma^2}}$, $\sigma = 1$ meV. Inelastic scattering is represented by a Gaussian of the form $e^{-\frac{(\omega \pm \omega_0)^2}{2\sigma^2}}$, $\sigma = 0.1$ meV, $\omega_0 = 1$ meV.

Solution. The occupation factors are

$$\langle n \rangle = \frac{1}{e^{\hbar \omega/kT} - 1}$$
 and $\langle n+1 \rangle = 1 + \frac{1}{e^{\hbar \omega/kT} - 1} = \frac{e^{\hbar \omega/kT}}{e^{\hbar \omega/kT} - 1}$

The ratio of the factors, and therefore of the scattering functions, for neutron energy gain and neutron energy loss is given by

$$S(-\mathbf{Q},-\omega) = \mathbf{e}^{-\hbar\omega/\mathbf{kT}} \mathbf{S}(\mathbf{Q},\omega)$$

(cf. Furrer, page 14).

For the "classical" limit, $T \gg E$, where E is the characteristic energy scale of the problem (σ in the quasi-elastic, ω_0 in the inelastic case), we get that $\hbar \omega \ll kT$ and therefore $\langle n \rangle \approx \langle n+1 \rangle$, i.e. a symmetric cross section for Stokes- and anti-Stokes processes.

For the "quantum-mechanical" limit, $T \to 0$, which makes the exponential very big. In this limit $\langle n \rangle \to 0$, while $\langle n + 1 \rangle \to 1$.

The effect on the two scattering processes can thus be plotted (red = high temperature limit, symmetric; blue = low temperature limit, asymmetric):

EXERCISE 7.2

Derive the intermediate scattering function, pair correlation function, and the scattering law $S(\mathbf{Q}, \omega) = \frac{1}{2\pi\hbar} \int dt \, e^{-i\omega t} I(\mathbf{Q}, t)$ for a single atom that oscillates harmonically in one dimension with a frequency ω_0 . When you perform the Fourier transform, assume that the amplitude of the oscillation is very small.

Solution. We start with the intermediate scattering function in one dimension:

$$I(Q,t) = \frac{1}{N} \sum_{j,j'} \langle e^{-iQr_{j'}(0)} e^{iQr_j(t)} \rangle$$

For a single atom, we have N = 1 and therefore

$$I(Q,t) = \langle e^{-iQr_j(0)}e^{iQr_j(t)} \rangle = \langle e^{-iQ(r_j(0)-r_j(t))} \rangle.$$

Set $\rho(t) = r(t) - r(0)$. For a harmonic oscillation $\rho(t) = \rho_0 \cos(\omega_0 t)$. Since the cosine is an even function, r(t) - r(0) = r(0) - r(t). This gives us

$$I(Q,t) = \langle e^{-iQ\rho_0 \cos(\omega_0 t)} \rangle$$

As given in the exercise, the amplitude ρ_0 is very small, so we can Taylor-expand the exponential:

$$I(Q,t) = \langle 1 - iQ\rho_0 \cos(\omega_0 t) - \frac{1}{2}Q^2\rho_0^2 \cos^2(\omega_0 t) + \frac{i}{6}Q^3\rho_0^3 \cos^3(\omega_0 t) \pm \dots \rangle.$$

All terms with odd powsers of the cosine vanish and therefore we are left with

$$I(Q,t) = 1 - \frac{1}{6}Q^2 \rho_0^2$$
, using $\langle \cos^2 x \rangle = \frac{1}{3}$.

Taking all terms into account, we arrive at

$$I(Q,t) = e^{-\frac{1}{6}Q^2\rho_0^2}$$

(which is analogous to the derviation of the Debye-Waller factor).

The pair correlation function is

$$G(r,t) = \frac{1}{2\pi} \int dQ \, e^{-iQr} I(Q,t) = \frac{1}{2\pi} \int dQ \, e^{-iQr} e^{-\frac{1}{6}Q^2 \rho_0^2} = \sqrt{\frac{3}{2\pi}} \frac{1}{\rho_0} \exp\left(-\frac{3r^2}{2\rho_0^2}\right).$$

The scattering law is

$$S(Q,\omega) = \frac{1}{2\pi\hbar} \int dt \, e^{-i\omega t} I(Q,t) = \frac{1}{2\pi\hbar} \int dQ \, e^{-i\omega t} e^{-\frac{1}{6}Q^2 \rho_0^2} = \exp\left(-\frac{1}{6}Q^2 \rho_0^2\right) \delta(\hbar\omega).$$

EXERCISE 7.3

Estimate the energy scale of the magnetic interaction for

• two electrons,

- an electron and a neutron,
- an electron and a nucleus (for example Cu), and
- a neutron and a nucleus (for example In).

The respective particles are supposed to have a distance of 1 Å.

Solution. The magnetic interaction energy is given by

$$\hat{U}_m(\mathbf{R}) = -\hat{\mu} \cdot \mathbf{B}(\mathbf{R}),$$

where $\hat{\mu}$ is the magnetic moment operator. We use the expression for the field **B**(**R**) of an electron for a spin-only system and get:

$$U_m(\mathbf{R}) = -\mu_1 \cdot \frac{\mu_0}{4\pi} \left(\nabla \times \frac{\mu_2 \times \mathbf{R}}{R^3} \right) = -\mu_1 \cdot \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{R}(\mu_2 \cdot \mathbf{R})}{R^5} - \frac{\mu_2}{R^3} \right).$$

Assuming both moments to be collinear, and perpendicular to \mathbf{R} , we get

$$U_m(R) = \frac{\mu_0}{4\pi} \frac{\mu_1 \mu_2}{R^3}.$$

The magnetic moments of the given particles and atoms are:

Particle	Magnetic moment
Neutron	$-1.91 \mu_N$
Electron	$-1.001\mu_B$
⁶³ Cu	$2.22\mu_N$
65 Cu	$2.38\mu_N$
113 In	$5.53 \mu_N$

(μ_B is the Bohr magneton, $e\hbar/2m_e = 9.274 \times 10^{-24}$ J/T. μ_N is the nuclear magneton, $e\hbar/2m_p = 5.051 \times 10^{-27}$ J/T. The nuclear moments of isotopes can readily be found on the web, e.g. on webelements.com.) Now we can calculate the magnetic interaction of the given systems:

System	$\mu_1~(10^{-27}~{ m J/T})$	μ_2 (10 ⁻²⁷ J/T)	U_m ($\mu e V$)
e-e	-9285	-9285	53.8
e-n	-9285	-9.66	0.056
e- ⁶³ Cu	-9285	12.3	-0.065
e- ⁶⁵ Cu	-9285	12.8	-0.070
n- ¹¹³ In	-9.66	27.9	$-1.68 imes10^{-4}$

As one can see, the interaction between neutrons and the nuclear spins is about 1000 times weaker than between neutrons and free electrons. It still plays a role in spin-incoherent scattering though. $\hfill \Box$