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EXERCISE 7.1

Discuss and draw qualitatively the thermal occupation factors of 〈n〉 and 〈n+1〉 for a diffusion
process leading to quasi-elastic scattering and a excitation, i.e. inelastic scattering. Discuss (a)
the classical limit (high temperatures, kBT À E) and (b) the quantum limit (T → 0).

Note: Quasi-elastic scattering is represented by a Gaussian of the form e−
ω2

2σ2 , σ= 1 meV. Inelas-

tic scattering is represented by a Gaussian of the form e−
(ω±ω0)2

2σ2 , σ= 0.1 meV, ω0 = 1 meV.

Solution. The occupation factors are

〈n〉 = 1
eħω/kT −1

and 〈n+1〉 = 1+ 1
eħω/kT −1

= eħω/kT

eħω/kT −1
.

The ratio of the factors, and therefore of the scattering functions, for neutron energy gain and
neutron energy loss is given by

S(−Q,−ω)= e−ħω/kTS(Q,ω)

(cf. Furrer, page 14).
For the “classical” limit, T À E, where E is the characteristic energy scale of the problem (σ in
the quasi-elastic, ω0 in the inelastic case), we get that ħω¿ kT and therefore 〈n〉 ≈ 〈n+1〉, i.e.
a symmetric cross section for Stokes- and anti-Stokes processes.
For the “quantum-mechanical” limit, T → 0, which makes the exponential very big. In this limit
〈n〉→ 0, while 〈n+1〉→ 1.
The effect on the two scattering processes can thus be plotted (red = high temperature limit,
symmetric; blue = low temperature limit, asymmetric):

quasi-elastic inelastic
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EXERCISE 7.2

Derive the intermediate scattering function, pair correlation function, and the scattering law
S(Q,ω) = 1

2πħ
∫

dt e−iωtI(Q, t) for a single atom that oscillates harmonically in one dimension
with a frequency ω0. When you perform the Fourier transform, assume that the amplitude of
the oscillation is very small.

Solution. We start with the intermediate scattering function in one dimension:

I(Q, t)= 1
N

∑
j, j′

〈e−iQr j′ (0)eiQr j(t)〉

For a single atom, we have N = 1 and therefore

I(Q, t)= 〈e−iQr j(0)eiQr j(t)〉 = 〈e−iQ(r j(0)−r j(t))〉.

Set ρ(t) = r(t)− r(0). For a harmonic oscillation ρ(t) = ρ0 cos(ω0t). Since the cosine is an even
function, r(t)− r(0)= r(0)− r(t). This gives us

I(Q, t)= 〈e−iQρ0 cos(ω0t)〉

As given in the exercise, the amplitude ρ0 is very small, so we can Taylor-expand the exponen-
tial:

I(Q, t)= 〈1− iQρ0 cos(ω0t)− 1
2

Q2ρ2
0 cos2(ω0t)+ i

6
Q3ρ3

0 cos3(ω0t)± ...〉.
All terms with odd powsers of the cosine vanish and therefore we are left with

I(Q, t)= 1− 1
6

Q2ρ2
0, using 〈cos2 x〉 = 1

3
.

Taking all terms into account, we arrive at

I(Q, t)= e−
1
6 Q2ρ2

0

(which is analogous to the derviation of the Debye-Waller factor).
The pair correlation function is

G(r, t)= 1
2π

∫
dQ e−iQr I(Q, t)= 1

2π

∫
dQ e−iQr e−

1
6 Q2ρ2

0 =
√

3
2π

1
ρ0

exp

(
−3r2

2ρ2
0

)
.

The scattering law is

S(Q,ω)= 1
2πħ

∫
dt e−iωtI(Q, t)= 1

2πħ
∫

dQ e−iωte−
1
6 Q2ρ2

0 = exp
(
−1

6
Q2ρ2

0

)
δ(ħω).

EXERCISE 7.3

Estimate the energy scale of the magnetic interaction for

• two electrons,
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• an electron and a neutron,

• an electron and a nucleus (for example Cu), and

• a neutron and a nucleus (for example In).

The respective particles are supposed to have a distance of 1 Å.

Solution. The magnetic interaction energy is given by

Ûm(R)=−µ̂ ·B(R),

where µ̂ is the magnetic moment operator. We use the expression for the field B(R) of an electron
for a spin-only system and get:

Um(R)=−µ1 · µ0

4π

(
∇× µ2 ×R

R3

)
=−µ1 · µ0

4π

(
3R(µ2 ·R)

R5 − µ2

R3

)
.

Assuming both moments to be collinear, and perpendicular to R, we get

Um(R)= µ0

4π
µ1µ2

R3 .

The magnetic moments of the given particles and atoms are:
Particle Magnetic moment
Neutron −1.91µN
Electron −1.001µB
63Cu 2.22µN
65Cu 2.38µN
113In 5.53µN

(µB is the Bohr magneton, eħ/2me = 9.274×10−24 J/T. µN is the nuclear magneton, eħ/2mp = 5.051×10−27

J/T. The nuclear moments of isotopes can readily be found on the web, e.g. on webelements.com.)
Now we can calculate the magnetic interaction of the given systems:
System µ1 (10−27 J/T) µ2 (10−27 J/T) Um (µeV)
e-e −9285 −9285 53.8
e-n −9285 −9.66 0.056
e-63Cu −9285 12.3 −0.065
e-65Cu −9285 12.8 −0.070
n-113In −9.66 27.9 −1.68×10−4

As one can see, the interaction between neutrons and the nuclear spins is about 1000 times
weaker than between neutrons and free electrons. It still plays a role in spin-incoherent scat-
tering though.
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