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EXERCISE 9.1

Derive the Lorentz factor
L (θ)= 1

sinθsin2θ
The origin of the Lorentz factor is twofold:

1. The statistical distribution of the crystal-
lites in a polycrystalline sample has to be
considered.

2. The detector covers only part of the Debye-
Scherrer cone, which describes the Bragg
scattering from polycrystalline materials.
As sketched in Figure 1, the wavevector
k′ of the scattered neutrons lies on a cone,
known as Debye-Scherrer cone, where the
axis of the cone is along the wavevector k of
the incoming neutrons and θ is the Bragg
angle.

Figure 1: Debye-Scherrer cone for Bragg
scattering from polycrystalline
materials.

Solution. First we consider the statistical distribution of the crystallites in a polycrystalline
sample. The fraction of microcrystals oriented to fulfill Bragg’s law λ= 2d sinθ can be obtained
by considering Figure 2. All crystallites with reciprocal lattice vectors lying in the dotted surface
area of a sphere with radius τ contribute to the scattering. The active surface area amounts to
2πτ2 cosθdθ/4πτ2. Hence, the total scattering for the Debye-Scherrer cone is given by

σcone ∝
∫ π/2

0
δ(k′−k)cosθdθ, (1)

where δ(k′− k) confines the integration to elastic scattering. Using the geometry sketched in
Figure 1 we find

k′2 −k2 = τ2 −2τkcosφ= τ2 −2τksinθ = (k′+k)(k′−k),

where we used the relation θ =π/2−φ. Setting k′ ≈ k yields

k′−k = 1
2k

(τ2 −2τksinθ). (2)
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Combining Eqs. (1) and (2) yields

σcone ∝
∫ π/2

0
δ(τ2 −2τksinθ)cosθdθ. (3)

We solve the integral in Eq. (3) by the substituion x = 2τksinθ:

σcone ∝
∫ π/2

0
δ(τ2 − x)

1
2τk

dx = 1
2τk

.

Setting τ= 2ksinθ from Bragg’s law we find

σcone ∝ 1
sinθ

. (4)

If the neutron detector with diameter d is at a distance r from the sample, it intercepts a fraction
q = d/2πrsin(2θ) of the neutrons in the cone. Multiplying σcone of Eq. (3) with the θ-dependent
term of q yields the final result for the Lorentz factor:

L(θ)= 1
sin(θ)sin(2θ)

Figure 2: Sketch showing the fraction of crystallites satisfying the Bragg condition.

EXERCISE 9.2

Consider the localized ferromagnet EuO and the itinerant ferromagnet Ni with their properties
given in the table. Calculate the intensity ratio of magnetic scattering and nuclear scattering
from the (111) Bragg peak in powder samples.

EuO Ni
crystal structure fcc fcc
lattice constants a = 5.13Å,α= 90◦ a = 3.52Å,α= 90◦

magnetic moments 7µB 0.6µB
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Figure 3: Neutron diffraction patterns for MnO above and below the Néel temperature.

EXERCISE 9.3

By comparing the intensity of the magnetic
(1

2
1
2

1
2

)
with the nuclear (111) Bragg reflection from

power diffraction measurements estimate the magnetic moment of the Mn2+ ions in the anti-
ferromagnet MnO. Do you need to take the Lorentz factor into account? As discussed last week,
the magnetic form factors can be found at
https://www.ill.eu/sites/ccsl/ffacts/.

Solution. From the measurement shown in Fig. 31, we can see that the nuclear (111) reflection
(at 2θnucl ' 24◦ and the magnetic

(1
2

1
2

1
2

)
) reflection (at 2θnucl ' 12◦ are of about the same inten-

sity at T = 80K.

For this problem, we can start from the expression for the intensity of powder peaks:

I ∝ 1
8π

d
r

Vλ3

V 2
UC

PhklF2
hkl

sinθsin(2θ)
, (5)

where d, r and λ are instrument parameters, V the sample volume, VUC the unit cell volume,
Phkl the multiplicity of the (hkl) reflection, Shkl the structure factor and 2θ is the scattering
angle (the factor 1/sin.. is the geometrical Lorentz factor calculated in the previous exercise).

For the magnetic peak, we have to replace the scattering amplitude Fhkl (which contains the

1C. Shull et al., Phys. Rev. 76 (1949) 1256.
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nuclear scattering length and the structure factor) by an equivalent for magnetic scattering

F2
mag,hkl = (γnr0)2 f 2

mag〈Sz〉2(1− (Q̂ · ê2))S2
mag, (6)

with the magnetic form factor f , the spin Sz and the structure factor Smag.

Therefore, cancelling all constant parameters, the ratio of nuclear to magnetic scattering will
be

1= Inucl

Imag =
F2

nucl,hkl

(γnro)2 f 2
mag〈Sz〉2

T(1− (Q̂ · ê)2)S2
mag

V 2
UC,mag sinθmag sin2θmag

V 2
UC,nucl sinθnucl sin2θnucl

. (7)

Now we can look at the individual terms:

• For the FCC NaCl structure Fnucl,111 = 4(bMn − bO) =−4 ·0.953 ·10−12 cm. Note that bMn
is negative, so that the minus sign produces a larger amplitude than a plus sign would.

• The magnetic momentum transfer is Q = 4πsin(θmag)/λ ' 1.25Å−1, so the magnetic form
factor, determined from the graph, is f ' 0.85 (To evaluate the graph, look on the given
ILL website).

• The magnetic unit cell parameter is twice as large as the chemical cell parameter, there-
fore VUC,mag = 8VUC,nucl . (with this unit cell, the magnetic reflection we are looking at is
not indexed as

(1
2

1
2

1
2

)
), but (111).)

• The most tricky part is the magnetic structure factor. In2 the magnetic structure is ex-
plained in detail - ferromagnetically coupled sheets parallel to (111), with the moments
aligned in-plane - and the structure factor is calculated as 32 for (111) and (111), but zero
for all other equivalent diretions. Therefore, Smag = 1

4 ·322.

• As given in3, the Mn spins are oriented in (111) planes. For the reflections with structure
factor 6= 0, i.e. (111) and (111), the spins are perpendicular to Q, so that (1− (Q̂ · ê)2)= 1.

• The ratio of sines is approximately 0.257.

• γnr0 is approximately 0.54 ·10−12 cm.

With this information, we can calculate 〈Sz〉:

〈Sz〉 =
√

42 ·0.9532

0.542 ·0.852 ·0.25 ·322 ·82 ·0.247' 2.11. (8)

That would indicate a magnetic moment of µ = gSz ' 4.2µB at 80K. Indeed, in saturation (i.e.
at very low temperature), we expect a Mn moment of 5µB, so that our calculation seems to be
quite reasonable.

2W.L. Roth, Phys. Rev. 110 (1958) 1333.
3W.L. Roth, Phys. Rev. 110 (1958) 1333.
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EXERCISE 9.4

From your solid state physics course you should remember the dispersion relation for phonons.
Calculate the dispersion of an acoustic phonon of a linear chain of atoms with a lattice constant
of a = 2Å. The measured velocity of sound is assumed to be 2300m/s. Draw the scattering dia-
gram for an inelastic neutron scattering experiment with k f = 2.57Å−1 at the boundary of the
2nd Brioullin zone using energy and momentum conservation. Consider phonon creation and
annihilation.

Solution. The phonon dispersion of a linear chain of equal atoms is:

ω(k)= 2

√
D
m

∣∣∣∣sin
ka
2

∣∣∣∣ , (9)

with an effective spring constant D, the atom mass m and the lattice constant a. (If we only
take positive k into account, we can omit the absolute value.)
The velocity of sound is defined as the slope around k = 0:

vs = dω
dk

∣∣∣
k=0

= 2

√
D
m

a
2

cos
ka
2

∣∣∣
k=0

=
√

D
m

a, (10)

so we can calculate the prefactor of the dispersion for the values given in the exercise:

ω(k)= 2vs

a
sin

ka
2

∣∣∣
k=0

= 23THz ·sin(k ·1Å) (11)

, or, in terms of energy,
E(k)= 15meV ·sin(k ·1Å). (12)

For inelastic scattering, we need to know both q and ħω of the excitation: the boundary of the
second Brillouin zone is defined by Q = 3π/a = 4.71Å, and E(3π/a)= 15meV as calculated above.
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The finale wavevector is given as k f = 2.57Å−1. For calculation of the incident wavevector we
use conservation of energy:

ħ2k2
i

2m
=

ħ2k2
f

2m
±ħω→ ki =

√
k2

f ±
2mω

ħ . (13)

For the ‘+’ sign we get ki = 3.73Å−1, while for the ‘-’ sign the radicant is negative. In other
words, only phonon creation can be observed with this fixed k f .
The scattering angle can be calculated from the cosine theorem (see scattering diagram):

Q2 = k2
i +k2

f −2kik f cosθ→ θ = 94.5◦. (14)

Figure 4:
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