Physics with neutrons 1

Sebastian Mühlbauer, sebastian.muehlbauer@frm2.tum.de Winter semester 2015/16 Exercise sheet 12 Due 2016–Jan–29

Lukas Karge, lukas.karge@frm2.tum.de, Tel.: 089-289-11774

EXERCISE 12.1

We are interested in \mathbf{Q} , but we measure $\mathbf{k_i}$ and $\mathbf{k_f}$ (all measured in ⁻¹) which are connected via

$$\mathbf{Q} = \mathbf{k_f} - \mathbf{k_i} \ . \tag{1}$$

- 1. Draw some possible scattering triangles for both elastic and inelastic scattering. What is the meaning of the direction of the \mathbf{k} and \mathbf{Q} ? Which experimental constraints do you expect?
- 2. Which absolute values $|\mathbf{Q}|$ can be reached in a scattering experiment as a function of $|\mathbf{k}_i|$, $|\mathbf{k}_f|$, and the scattering angle 2θ ?
- 3. Show that this relation reduces to Bragg's law in the case of elastic scattering.
- 4. Basically, there are two classes of spectrometers: some fix $\mathbf{k_i}$, others $\mathbf{k_f}$ during an experiment. (It can also be varied which however requires a reconfiguration of the instrument.) Two examples at the FRM II are the time-of-flight spectrometer TOFTOF which works with a fixed $\mathbf{k_i}$ and the triple axis spectrometer PUMA which fixes $\mathbf{k_f}$. What are the consequences for the scattering triangles that can be realized during an experiment?
- 5. The energy change of the neutron is defined as $\Delta E = E_f E_i$ (all measured in meV) with

$$E_{i/f} = \frac{\hbar^2 k_{i/f}^2}{2m_n}$$

Which are the limits of ΔE for TOFTOF and PUMA, respectively?

EXERCISE 12.2

Most neutron experiments measure the scattering function $S(\mathbf{Q}, \omega)$. Neutron Spin-Echo (NSE) was introduced by Ferenc Mezei in the 1970s as a means of directly measuring $I(\mathbf{Q}, \tau)$, i.e. the Fourier-transform of the scattering function, the intermediate scattering function.

Derive the spin-echo condition for (quasi-)elastic scattering at a sample which links a change in the neutron energy to a change of the polarisation phase. Why is it possible to use a broad wavelength band $\delta\lambda/\lambda \sim 10^{-1}$ of incoming neutrons?