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Exercise 12.1

We are interested in Q, but we measure ki and kf (all measured in −1) which are connected via

Q = kf − ki . (1)

1. Draw some possible scattering triangles for both elastic and inelastic scattering. What is the

meaning of the direction of the k and Q? Which experimental constraints do you expect?

2. Which absolute values |Q| can be reached in a scattering experiment as a function of |ki|, |kf |,
and the scattering angle 2θ?

3. Show that this relation reduces to Bragg's law in the case of elastic scattering.

4. Basically, there are two classes of spectrometers: some �x ki, others kf during an experiment. (It

can also be varied which however requires a recon�guration of the instrument.) Two examples at

the FRM II are the time-of-�ight spectrometer TOFTOF which works with a �xed ki and the triple

axis spectrometer PUMA which �xes kf . What are the consequences for the scattering triangles

that can be realized during an experiment?

5. The energy change of the neutron is de�ned as ∆E = Ef − Ei (all measured in meV) with

Ei/f =
~2k2i/f
2mn

.

Which are the limits of ∆E for TOFTOF and PUMA, respectively?

Solution. 1. The direction of ~k is indeed the direction in which the neutrons propagate and therefore
quite �xed (because, for example, the neutron source is always at the sample place). However, it

is possible by turning the sample to have ~Q pointing in di�erent directions in the reciprocal lattice

of the crystal. As the crystal has to be mounted somehow, it will not be possible to turn it in

every direction, therefore limiting the regions in reciprocal space that can be accessed by ~Q. Also
the scattering angle is limited: it cannot be 0° because the signal drowns there in the direct beam

and it cannot be 180° because that would require to place the detector in the incoming beam.

2.
~Q = ~kf − ~ki

|Q|2 = | ~kf − ~ki|2 = |kf,x − ki,x|2 + |kf,y − ki,y|2 = |kf |2 + |ki|2 − 2|kf ||ki| · cos(2θ)
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3.

|Q|2 = 2|k|2 − 2|k|2 · cos(2θ)

=
2 · 4π
λ2

(1− cos(2θ))

=
2 · 4π
λ2

(
1− 2 sin2

(
2θ

2

))
=

16π2

λ2
sin2

(
2θ

2

)
4. When the initial wavevector (and therefore the initial energy) of the neutron is �xed, the maximal

energy it can possibly lose is this initial energy. In contrast, the energy it can gain is unlimited.

When the �nal energy of the neutron is �xed, the maximal energy it can gain is this �nal energy

� and the energy it can lose is unlimited.

a) TOFTOF: ∆E ε [−Ei,∞[

b) PUMA: ∆E ε ]−∞, Ei].

5. TOFTOF:

|Q|2 = |kf |2 + |ki|2 − 2|kf ||ki| cos(2θ)

=
2mEf

~2
+

2mEi

~2
− 2

√
2mEf

~2

√
2mEi

~2
cos(2θ)

=
2m

~2
(

2Ei + ∆E − 2
√
Ei(Ei + ∆E) cos(2θ)

)
PUMA:

|Q|2 = |kf |2 + |ki|2 − 2|kf ||ki| cos(2θ)

= . . .

=
2m

~2

(
2Ef −∆E − 2

√
Ef (Ef −∆E) cos(2θ)

)
There are e�ectively two variables: the length of the unit cell, a, and the slope at low k, which is

the sound velocity.

Exercise 12.2

Most neutron experiments measure the scattering function S (Q, ω). Neutron Spin-Echo (NSE) was

introduced by Ferenc Mezei in the 1970s as a means of directly measuring I (Q, τ), i.e. the Fourier-

transform of the scattering function, the intermediate scattering function.

Derive the spin-echo condition for (quasi-)elastic scattering at a sample which links a change in the

neutron energy to a change of the polarisation phase. Why is it possible to use a broad wavelength

band δλ/λ ∼ 10−1 of incoming neutrons?

Solution. The fundamental idea of NSE is to follow the energy change of each individual neutron in the

scattering process. The existence of the neutron spin allows us, recording information on its trajectory.
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This procedure consists of the following steps:

Figure 1: Schematic layout of a spin-echo spectrometer.

1. π/2 �ip: The neutron beam, initially polarised parallel to the magnetic guide �eld (which stretches

over the whole spectrometer) impinges on a �at �ipper coil placed perpendicular to the beam.

Inside this coil the spin of each neutron will be turned to 90o with respect to the guide �eld. This

π/2 �ip thus initiates Larmor precessions, which act as clocks keeping track of the time elapsed

since the neutron hit the π/2 �ipper.

2. Inside a magnetic �eld of variable strength the Larmor precession angle φ is proportional to the

time the neutron spends traversing the �eld, i.e. it is a record of the individual neutron velocity

v:

φ = γL ·
LH

v

where the Larmor constant γL = 2.916kHz/Oe, H is the average strength of the magnetic �eld

of length L.

3. π �ip: One of the two components of the neutron spin in the plane of precession is inverted, the

other one is left unchanged by a 180 turn around a properly chosen axis. This has the e�ect that

the spin angle φ is transformed into −φ with respect to this axis.

4. Scattering on the sample results in an energy change of the neutron

~ω = mv′2/2−mv2/2 ∼= mv(v′ − v) (2)

with a probability described by the dynamic structure factor S(Q,ω) of the sample. Here m is

the neutron mass and v′ the �nal neutron velocity. The relative velocity change is assumed to be

small. The momentum transfer Q is

~Q = mv′ −mv.

5. Larmor precessions in a second �eld region will add another angle φ′ to the apparent precession

angle −φ up to the �ipper at the sample:

−φ+ φ′ = −γLHL
v

+
γLH

′L′

v′
.
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This can provide us with a measure of the change of neutron energy if HL = H ′L′, i.e.

−φ+ φ′ = −γLHL
(

1

v′
− 1

v

)
≈ γLHL

1

v
(v′ − v) ≈ γLH

′L′

mv3
~ω

where the approximation again applies to small velocity changes and we made use of Eq. (2).

6. π/2 �ip and analyser: The 90 �ip turns one (say x) component of the precessing polarisation

parallel to the guide �eld direction (say z). The neutron polarisation is determined by supermirror

analysers or polarized 3He �lter cells. The transmission coe�cient of the analyser strongly depends

on the Pz component of the beam polarisation. This allows us to determine

P =

∫
S(Q,ω) cos(ωt)dω∫

S(Q,ω)dω
.

The nominator is just the cosine Fourier transform of S(Q,ω), which is the real part of the time

dependent intermediate scattering function I(Q,ω). The denominator is just the static structure

factor S(Q), thus the directly observed result of a NSE experiment is

P = s(Q, t) =
<(I(Q, t))

S(Q)

which by de�nition obeys the s(Q, t = 0) = 1 relation, and the normalized inter- mediate scattering

function s(Q, t) is basically identical with the so-called Kubo relaxation function.

Due to the velocity spread the beam su�ers a depolarization in the precession coil, resulting in an

average polarization

P = 〈cosφ〉 =

∫
f(v) cos(φ(v))dv.

However, the depolarization is reverted when traversing the second, identical coil with opposite

direction of precession. Therefore, a relatively broad neutron wavelength band of the order

δλ/λ ∼ 10−1 can be used, whereas in backscattering δλ/λ ∼ 10−4 is generally required.
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