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Exercise .

Neutrons from fission (E ≈ 2MeV ) are slowed down to the thermal regime (E ≈ 20meV )
by scattering with the atoms of a moderator material. We assume that the scattering is
purely elastic and nonrelativistic. Calculate the energy loss per collision event depending
on the mass of the moderator atoms and on the scattering angle. How many collisions are
needed to moderate fission neutrons to thermal neutrons in HO, DO and graphite?

Solution. For simplicity, we treat moderation as purely elastic, nonrelativistic scattering
on a nucleus of mass number A without absorption. Let v be the initial neutron speed
in the lab frame, while the nucleus is at rest.
First convert to the center-of-mass frame, moving with speed vs:

m(A+ 1)vs = mv +mAvA.

With the nucleus speed vA = 0 we get

vs =
v

A+ 1
.

The initial speeds of the neutron V and the nucleus VA in the center-of-mass frame are:

V = v − vs =
A

A+ 1
v and VA = −vs = − 1

A+ 1
v.

Let V ′ and V ′A be the center-of-mass speeds of neutron and nucleus after scattering. From
energy and momentum conservation we get

V +AVA = V ′ +AV ′A = 0 (center of mass!) and V 2 +AV 2
A = V ′2 +AV ′2A

and therefore
|V | = |V ′| and |VA| = |V ′A|.

Let Ψ be the scattering angle in the center-of-mass frame (see sketch).
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vs = −VA

V ′v′

V

ψ Ψ

v

We can calculate the final speed in the lab frame using the cosine theorem:

v′2 = V ′2 + V 2
A − 2V ′VA cos(π −Ψ) = V ′2 + V 2

A + 2V ′VA cos Ψ.

Inserting |V ′| = |V | = Av/(A+1) and |V ′A| = |VA| = V/(A+1) and multiplying by m/2,
we get for the neutron energy

E′ = E

(
1− 2A

(A+ 1)2
(1− cos Ψ)

)
,

or, with the convenient definition α =
(
A−1
A+1

)2
,

E′ =
1

2
E ((1 + α) + (1− α) cos Ψ) .

The neutron energy loss is therefore

∆E = E − E′ = 1− α
2

E(1− cos Ψ),

which has its maximum at ∆Emax = (1− α)E.
To determine the average energy loss, we have to average over scattering angles Ψ. For
isotropic scattering, the probability function for a certain angle, w(Ψ) is given by

w(Ψ)dΨ =
1

2
sin Ψ dΨ

The rationale for this is: the angle Ψ describes only the scattering angle within the
scattering plane; there is another angle Φ defining the scattering plane. The term sin Ψ
accounts for the possible choices of Φ for any given Ψ; for Ψ = π/2 this is maximal.
Another way to express this w(Ψ) is to transform it to w(cos Ψ), which happens to be a
constant:

w(cos Ψ)d(cos Ψ) =
1

2
d(cos Ψ).

This means that for the average energy loss we can simply express cos Ψ by the average
value of its domain [−1, 1], which is zero:

∆E =
1

2
(1− α)E.
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The scattering angle in the lab frame, ψ, depends on the mass of the nucleus:

cosψ =
A cos Ψ + 1√

A2 + 2A cos Ψ + 1
.

This means that although cos Ψ = 0, the average in the lab frame cosψ = 2/(3A), with
the largest values for the smallest nuclei.
For determining n, the average number of collisions needed to thermalize a neutron from
a given initial energy E0 to a given energy Eth, we need to average over more than one
scattering process. We can write this as

En = E0

n∏
i=1

(1 + α) + (1− α) cos Ψi

2
,

but need to keep in mind that the average of a product is not the product of the average
of its factors. Therefore it is useful to define

exp−ξi :=
(1 + α) + (1− α) cos Ψi

2
,

with the logarithmic energy decrement ξ, and with this we can transform the product
into a sum:

ln
En
E0

= −
n∑
i=1

ξi,

where we can now apply averaging more easily (under the condition that the probability
function w(cos Ψ) is independent of energy):

ln
En
E0

= −nξ.

ξ can be calculated from the distribution of final energies E′ after one collision: from
w(cos Ψ) we can also calculate an energy probability w(E → E′)dE′:

w(E → E′)dE′ = w(cos Ψ)
d cos Ψ

dE′
dE′ =

dE′

(1− α)E

with the limits αE ≤ E′ ≤ E. With this result

ξ =

∫ E

αE
ln

(
E

E′

)
w(E → E′)dE′ =

∫ E

αE
ln

(
E

E′

)
dE′

E(1− α)
= 1 +

α lnα

1− α
≈ 2

A+ 2
3

,

where the final approximation is good for A > 2.
Finally, the average number of collisions from E0 to Eth is:

n = −1

ξ
ln
Eth
E0

.

With weighted summing over individual nuclei for molecular matter this gives us (for
E0 = 2MeV, Eth = 20meV): n(H2O) ≈ 26, n(D2O) ≈ 35 and n(C) ≈ 116.
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Exercise .

From your solid state physics course you should remember the dispersion relation for
phonons. Calculate the dispersion of an acoustic phonon of a linear chain of atoms
with a lattice constant of a = 2 Å. The measured velocity of sound is assumed to be
vs = 2300m/s. Draw the scattering diagram for an inelastic neutron scattering experi-
ment with kf = 2.57 Å−1 at the boundary of the nd Brillouin zone. Consider phonon
creation and annihilation.

Solution. The phonon dispersion of a linear chain of equal atoms is:

ω(k) = 2

√
D

m

∣∣∣∣sin ka2
∣∣∣∣ ,

with an effective spring constant D, the atom mass m and the lattice constant a. (If we
only take positive k into account, we can omit the absolute value.)
The velocity of sound is defined as the slope around k = 0:

vs =
dω

dk

∣∣∣∣
k=0

= 2

√
D

m

a

2
cos

ka

2

∣∣∣∣∣
k=0

=

√
D

m
a,

so we can calculate the prefactor of the dispersion for the values given in the exercise:

ω(k) =
2vs
a

sin
ka

2
= 23 THz · sin(k · 1),

or, in terms of energy,
E(k) = 15 meV · sin(k · 1).

For inelastic scattering, we need to know both q and ~ω of the excitation: the boundary
of the second Brillouin zone is defined by Q = 3π/a = 4.71, and E(3π/a) = 15 meV
as calculated above. The final wavevector is given as kf = 2.57. For calculation of the
incident wavevector we use conservation of energy:

~2k2i
2m

=
~2k2f
2m

± ~ω =⇒ ki =

√
k2f ±

2mω

~
.

For the “+” sign we get ki = 3.73, while for the “−” sign the radicand is negative. In other
words, only phonon creation can be observed with this fixed kf .
The scattering angle can be calculated from the cosine theorem (see scattering diagram):

Q2 = k2i + k2f − 2kikf cos Θ =⇒ Θ = 94.5◦.

~ki

~kf
~Q

Θ





Exercise .

The Maxwell-Boltzmann distribution has been given in the lecture in units of Energy
E and particle velocity v. Express the Maxwell-Boltzmann distribution

f(v) =
4√
π

(
mn

2kbT

)3/2

v2 exp

(
−

1
2mnv

2

kbT

)

in terms of the particle wavelength λ. Determine 〈λ〉 ,
〈
λ2
〉
and λmax (i.e. the λ where

f(λ) is maximal). On the lecture website will find the data file hfir_spectrum.xls.
It contains a neutron wavelength spectrum (st column: wavelength in Å, nd column:
intensity in arbitrary units) measured at the cold source of the HFIR reactor in Oak
Ridge, USA. Use a fitting tool to fit the Maxwell-Boltzmann flux distribution to this
data and extract the moderator temperature. Remember that the flux distribution is
given by

Ψ(v) = v · f(v)

Solution. To express the Maxwell-Boltzmann distribution in terms of wavelength, we
have to calculate the differential:

f(v) dv = f(v(λ))
dv

dλ
dλ.

De Broglie’s relation helps there:

λ =
h

p
=⇒ v =

h

mnλ
and dv = − h

mnλ2
dλ

The sign means that we have to exchange integration bounds when integrating over dλ.
Now we can express f(λ) dλ:

f(λ) dλ =
4√
π

(
mn

2kbT

)3/2( h

mnλ

)2

exp

(
−h

2/2mnλ
2

kbT

)
h

mnλ2
dλ,

which can be simplified using λT = h/
√

2mnkbT , i.e. the wavelength that corresponds
to the temperature T :

f(λ) dλ =
4√
π

λ3T
λ4

exp

(
−
λ2T
λ2

)
.

A bit of calculation gives:

〈λ〉 =
2√
π
λT , 〈λ2〉 = 2λ2T , λmax =

√
2λT =

√
〈λ2〉.

Compare to f(v):

〈v〉 =
2√
π
vT , 〈v2〉 =

3

2
v2T , vmax = vT .

Plot and fit of the data file:
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Temperature: 26.437 K

HFIR Oak Ridge spectrum
Fit

h6i = 6.7636max = 3.8156

6T = 5.9935

Fitting function: f(λ) = I0 ·
λ3T
λ5
· exp

(
−
λ2T
λ2

)
The prefactor I0 is arbitrary; the thermal wavelength is λT ≈ 6Å.
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