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Exercise 4.1

Calculate the magnetic interaction potential for a typical rare earth magnet, µ ≈ 10µB (Tb3+, Dy3+,
Ho3+), and of a Cu spin in a high-Tc superconductor, µ ≈ 1µB, in a �eld of 1T.

Solution. The magnetic interaction potential is given as

V = µ ·B.

The Bohr magneton is µB = e~
2me

= 5.79 · 10−5 eV/T. From this:

V (10µB) = 5.79 · 10−4 eV; V (1µB) = 5.79 · 10−5 eV.

Exercise 4.2

The potential
U(r, ϑ, ϕ) = −U0 Θ(R− r)

is called a hard sphere potential with radius R. (Θ(x) is the Heaviside step function, which is de�ned
to be zero for x < 0 and unity for x ≥ 0.)

1. Calculate the di�erential and the total cross section of scattering from this potential.

2. Using small-angle neutron scattering, a biologist would like to measure the diameter of spherical
micelles (aggregated �clusters� of molecules in a solvent). What is the form factor F (QR) (i.e.
the Q-dependent part of the di�erential scattering cross section) of one such micelle under the
assumption that it can be approximated by a homogeneous sphere with a radius of 200nm?

3. For small values of QR, the form factor can be Taylor-expanded. What is the resulting behavior?

4. Plot the form factor (versus QR) on a log-log scale. For large values of QR, what is the behavior
of F (QR) when one averages over the oscillations?

5. What happens (qualitatively) when the sphere is placed in a solvent? What happens when there
are multiple spheres present?
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Solution. The scattering amplitude is given by

f( ~Q) = − m

2π~2

∫
d3r U(~r) exp(−i ~Q · ~r),

or, in spherical coordinates,

f(Q) = − m

2π~2

∫
dr d(cosϑ) dϕ r2 U(r) exp(−iQr cosϑ).

Since the potential is spherically symmetric, we can use ϑ as the angle between ~Q and ~r in the exponential
because we can select the coordinate system freely, so that ~Q is along the z axis.
Inserting our given potential and doing the trivial ϕ integration we get

f(Q) = − m

2π~2
(−2πU0)

∫ ∞
0
dr r2Θ(R− r)

∫ 1

−1
d(cosϑ) exp(−iQr cosϑ).

The integration over cosϑ is also easy:

f(Q) =
mU0

~2

∫ ∞
0
dr r2Θ(R− r) 1

−iQr
(exp(−iQr)− exp(iQr)) .

Now we replace the exponential representation of the sine and resolve the Θ function by adjusting the
integration limits:

f(Q) =
2mU0

~2

1

Q

∫ R

0
dr r sin(Qr).

f(Q) =
2mU0

~2

1

Q

[
sinQr

Q2
− r cosQr

Q

]R
0

=
2mU0

~2

sinQR−QR cosQR

Q3
.

The �nal step is to rewrite this a bit:

f(Q) =
mU0

2π~2

4πR3

3

3(sinQR−QR cosQR)

(QR)3
= ρ · Vs · 3

sinQR−QR cosQR

(QR)3
,

where ρ = mU0/2π~2 is the �scattering length density� (SLD) and Vs the volume of the sphere. Note
that the SLD de�nition matches well with the Fermi pseudopotential used for scattering at single nuclei:
the singular bδ(r) is replaced by an ρ(r) extended over the sphere. This is sensible because in small
angle scattering, we are looking at very large structures and so cannot resolve individual scattering
centers inside the spheres any more.
The di�erential cross section dσ/dΩ is simply given by |f(Q)|2.
The total cross section is obtained by integrating over all solid angle. For this, we need to express dΩ
in terms of Q:

Q = 2k sin
θ

2
=⇒ dQ

dθ
= k cos

θ

2

=⇒ dΩ = 2πdθ sin θ = 2π
dQ

k cos θ2
sin θ = 2πdQ

2 sin θ
2

k
= 2π

Q

k2
dQ.

The integration now gives

σ =

∫
Ω
dΩ

dσ

dΩ
=

∫ 2k

0
dQ

2πQ

k2
|f(Q)|2;

note that we integrate in Q from 0 to 2k, which is the maximum momentum transfer (a backscattering
process). Inserting f(Q) gives

σ =

∫ 2k

0
dQ

2πQ

k2
9ρ2V 2 (sinQR−QR cosQR)2

(QR)6
=

18πρ2V 2

(kR)2

∫ 2kR

0
du

sin2 u− 2u sinu cosu+ u2 cos2 u

u5
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with the substitution u = kR, and solving the integral we have

σ =
9πρ2V 2

2(kR)2

[
1− 1

(2kR)2
+

sin 4kR

(2kR)3
− sin2 2kR

(2kR)4

]
as the total scattering cross section.
The form factor for the micelle is the Q-dependent part of the di�erential cross section for the hard
sphere potential with R = 200 nm:

F (QR) = ρ2 · V 2
s · 9

sin2QR− 2QR sinQR cosQR+Q2R2 cos2QR

(QR)6
.

For small values of QR, the Taylor expansion of the form factor reads

F (QR) ≈ 1− (QR)2

5
,

This is called the �Guinier approximation�, and it gives information about the micelle size.
A plot of the form factor:
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The behavior for large QR, when averaging over oscillations, is ∝ (QR)−4.
With the sphere placed in a solvent, the scattering length density ρ is replaced by the SLD contrast
between sphere and solvent ρsphere−ρsolvent. By appropriate �contrast matching� with di�erent solvents
(e.g. di�erent mixtures of D2O and H2O), one can accurately determine ρsphere. For N spheres, the
form of dσ/dΩ stays the same (with a factor of N) only if the spheres are noninteracting. In reality,
they are interacting (e.g. certain sphere�sphere distances are preferred), which leads to an additional
factor in dσ/dΩ called the �structure factor�.

Exercise 4.3
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Electrons are the origin of the magnetism in magnetic materials. Assume that the probability den-
sity of �nding an electron at ~r = (r, ϑ, ϕ) is given by a Gaussian pro�le

ρ(r) = ρ0 exp

[
− r2

2σ2

]
with a half-width at half maximum of a = 2Å (what is the relation between σ and a?). From this
pro�le, calculate the magnetic form factor of an unpaired electron.

Solution. From setting ρ(a) = 1
2 , you can �nd out the relationship between standard deviation σ and

HWHM a:
a = σ

√
2 ln 2.

Consider the scattering amplitude as in exercise 8:

f(Q) = − m

2π~2

∫
d3r ρ0 exp

[
− r2

2σ2

]
exp

[
−i ~Q · ~r

]
= −mρ0

~2

∫ 1

−1
d cosϑ

∫ ∞
0
dr r2e−iQr cosϑe−r

2/2σ2

= −mρ0

Q~2

∫ ∞
0
dr r sin(Qr)e−r

2/2σ2
= −mρ0

√
πa3

4~2
√

ln 2
3 exp

[
−Q

2a2

4 ln 2

]
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