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1 Introduction 

Many properties of solid matter like their mechanical, thermal, optical, electrical and 

magnetic properties depend strongly on their atomic structure. Therefore, a good 

understanding of the physical properties needs not only the knowledge about the particles 

inside (atoms, ions, molecules) but also about their spatial arrangement. For most cases 

diffraction is the tool to answer questions about the atomic and/or magnetic structure of a 

system. Beyond this, neutron diffraction allows to answer questions where other techniques 

fail. 

2 Crystallographic Basics 

In the ideal case a complete solid matter consists of small identical units (same content, same 

size, same orientation like sugar pieces in a box). These units are called unit cells. A solid 

matter made of these cells is called a single crystal. The shape of a unit cell is equivalent to a 

parallelepiped that is defined by its base vectors a1, a2 und a3 and that  can be described by its 

lattice constants a, b, c; ,  and   (pic. 1). Typical lengths of the edges of such cells are 

between a few and a few ten Angstrom (1Å=10
–10 

m). The combination of various restrictions 

of the lattice constants between a ≠ b ≠ c; ≠  ≠ ≠ 90° (triclinic) and a = b = c;  =  
= 90° (cubic) yields seven crystal systems. The request to choose the system with the highest 

symmetry to describe the crystal structure yields fourteen Bravais lattices, seven primitive and 

seven centered lattices. 

Fig. 1: Unit cell with |a1|=a, |a2|=b, |a3|=c,  
 

Each unit cell contains one or more particles i. The referring atomic positions xi=xi*a1 + yi*a2 

+ zi*a3 are described in relative coordinates 0 ≤ xi; yi; zi < 1. The application of different 

symmetry operations (mirrors, rotations, glide mirrors, screw axes) on the atoms in one cell 

yield the 230 different space groups (see [1]). 

 

The description of a crystal using identical unit cells allows the representation as a three 

dimensional lattice network. Each lattice point can be described as the lattice vector t = u*a1 

+ v*a2 + w*a3; u, v, w  Z. From this picture we get the central word for diffraction in 

crystals; the lattice plane or diffraction plane. The orientations of these planes in the crystal 

are described by the so called Miller indices h, k and l with h, k, l  Z (see pic. 2). The 

reciprocal base vectors a*1, a*2, a*3 create the reciprocal space with: a*i * aj  = ij with ij=1 

for i=j and ij=0 for i≠ j. Each point Q=h*a*1 + k*a*2 + l*a*3 represents the normal vector of 
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a (hkl) Plane. Each plane cuts the crystal lattice along its base vectors a1, a2 and a3 at 1/h*a1, 

1/k*a2 and 1/l*a3. A Miller index of zero means that the referring axis will be cut in infinity. 

Thus, the lattice plane is parallel to this axis.  

Fig. 2: Different lattice planes in a crystal lattice, a3 = viewing direction 

 

The atoms in a unit cell are not rigidly fixed at their positions. They oscillate around their 

positions (e.g. thermal excitation). A simple description for this is the model of coupled 

springs. In this model atoms are connected via springs whose forces describe the binding 

forces between the atoms (e.g. van der Waals, Coulomb, valence). The back driving forces of 

the springs are proportional to the deviation xi of the atoms from their mean positions and to 

the force constant D, thus. F = -D*Δx (harmonic approximation). 

Therefore, the atoms oscillate with xi = Ai*sin(ν*t) around their mean positions with the 

frequency ν and the amplitude Ai. Both, ν and Ai are influenced by the force constant Dj of the 

springs and the atomic masses mi of the neighbouring atoms. The resulting lattice oscillations 

are called phonons in reference to the photons (light particles) in optics, which as well 

transport energy in dependence of their frequency. A more complex and detailed description 

of phonons in dependence on the lattice structure and the atomic reciprocal effects is given in 

lattice dynamics. In the harmonic approximation the displacements of an atom can be 

described with an oscillation ellipsoid. This ellipsoid describes the preferred spatial volume in 

which the atom is placed. Its so called mean square displacements (MSD) U
i
jk represent the 

different sizes of the ellipsoid along the different main directions j, k in the crystal. The 

simplest case is a sphere with the isotrope MSD Bi. In the next paragraph MSD are discussed 

from the point of view of diffraction analysis. 

A full description of a single crystal contains information about lattice class, lattice constants 

and unit cell, space group and all atomic positions and their MSD. If the occupancy of one or 

more positions is not exactly 100%, e.g. for a mixed crystal or a crystal with deficiencies 

there has to be used also an occupancy factor.  
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3 Structure Determination with Diffraction 

3.1 Introduction 

Diffraction means coherent elastic scattering of a wave on a crystal. Because of the quantum 

mechanical wave/particle dualism x-rays as well as neutron beams offer the requested wave 

properties: 

 

Electrons: E = hν; λ= c/ν 

Neutrons: Ekin = 1/2 * mn*v
2
 = hν = p

2
/2mn; λ= h/p; p ~(mn kB T) 

 

h: Planck’s constant; ν: oscillation frequency; λ: wavelength; c: light speed; p: impact; mn: 

neutron mass; kB: Boltzmann constant; T: temperature 

 

Only the cross section partners are different (x-rays: scattering on the electron shell of the 

atoms, neutrons: core (and magnetic) scattering) as explained in detail below. In scattering 

experiments information about structural properties are hidden in the scattering intensities I.  

In the following pages we will discuss only elastic scattering (λin=λout). The cross section of 

the radiation with the crystal lattice can be described as following: 

Parallel waves of the incoming radiation with constant λ are diffracted by lattice planes which 

are ordered parallel with a constant distance of d. This is very similar to a light beam reflected 

by a mirror. The angle of the diffracted beam is equal to the angle of the incoming beam, thus 

the total angle between incoming and outgoing beam is 2 (see fig. 3). 

Fig. 3: Scattering on lattice planes 

 

The overlap of all beams diffracted by a single lattice plane results in constructive 

interference only if the combination of the angle , lattice plane distance d and wavelength 

λmeets Bragg’s law: 

2d sin = λ 
 

The largest distance dhkl = |Q| of neighboured parallel lattice planes in a crystal is never larger 

than the largest lattice constant dhkl ≤ max(a; b; c). Therefore, it can only be a few Å or less. 

For a cubic unit cell (a = b = c;  =  =  = 90°) this means:  

dhkl = a/ (h
2
+k

2
+l

2
) 

 

With increasing scattering angle also the indices (hkl) increase while the lattice plane 

distances shrink with a lower limit of dmin = λ/2. Therefore, scattering experiments need 

Q 
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wavelengths λ in the same order of magnitude of the lattice constants or below. This is equal 

to x-ray energies of about 10 keV or neutron energies about 25 meV (thermal neutrons).  

 

Ewald Construction: In reciprocal space each Bragg reflex is represented by a point Q = 

h*a*1 + k*a*2 + l*a*3. A scattered beam with the wave vector k fulfils Bragg’s law if the 

relationship k = k0 + Q , |k|=|k0|=1/λ is true, as shown in fig. 4. During an experiment the 

available reciprocal space can be described by an Ewald sphere with a diameter of 2/λ and the 

(000)-point as cross point of k0 direction and the centre of the diameter of the sphere. The 

rotation of the crystal lattice during the diffraction experiment is equal to a synchronous 

movement of the reciprocal lattice around the (000)-point. If Bragg’s law is fulfilled, one 

point (h k l) of the reciprocal lattices lies exactly on the Ewald sphere. The angle between the 

k-vector and the k0-vektor is 2. The limited radius of 1/λ of the Ewald sphere limits also the 

visibility of (h k l) reflections to |Q| < 2/λ.  

 
Fig. 4: Ewald construction 

 

Determination of the Unit Cell: Following Braggs law the scattering angle 2 varies (for 

λ=const.) according to the lattice distance dhkl. Thus for a given λ and known scattering angles 

2 one can calculate the different d values of the different layers in the lattice of a crystal. 

With this knowledge is possible to determine the lattice system and the lattice constants of the 

unit cell (although not always unambiguously!).  

 

Atomic Positions in the Unit Cell: The outer shape of a unit cell does not tell anything about 

the atomic positions xi=(xi yi zi) of each atom in this cell. To determine the atomic positions 

one has to measure also the quantities of the different reflection intensities of a crystal. This 

works because of the relationship between the intensities of Bragg reflections and the specific 

cross section of the selected radiation with each element in a unit cell. Generally one can use 

the following formula for the intensity of a Bragg reflection (h k l) with Q (kinetic scattering 

theory): 

 

Ihkl ~ |Fhkl|
2
 with Fhkl =

n
i=1 si(Q) exp(2(hxi+kyi+lzi)) 

 

Q 
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The scattering factor F is a complex function describing the overlap of the scattering waves of 

each atom i (n per unit cell). si(Q) describes the scattering strength of the i-th atom on its 

position xi in dependence of the scattering vector Q, which depends on the character of cross 

section as described below. 

In this context one remark concerning statistics: For measurements of radiation the statistical 

error  is the square root of the number of measured events, e.g. x-ray or neutron particles. 

Thus, 100 events yield an error of 10% while 10,000 events yield an error of only 1%! 

 

Mean Square Displacements (MSD): Thermal movement of atoms around their average 

positions reduce the Bragg intensities during a diffraction experiment. The cause for this 

effect is the reduced probability density and therefore reduced cross section probability at the 

average positions. For higher temperatures (above a few Kelvin) the MSD Bi of the atoms 

increase linearly to the temperature T, this means B ~ T. Near a temperature of 0 K the MSD 

become constant with values larger than zero (zero point oscillation of the quantum 

mechanical harmonic oscillator). 

Thus, the true scattering capability si of the i-th atom in a structure has to be corrected by an 

angle-dependent factor (the so called Debye-Waller factor): 

 

si(Q) → si(Q) * exp(-Bi(sin Q/)
2
) 

 

This Debye-Waller factor decreases with increasing temperatures and yields an attenuation of 

the Bragg reflection intensities. At the same time this factor becomes significantly smaller 

with larger sinλ~|Q|. Therefore, especially reflections with large indices lose a lot of 

intensity. The formula for anisotropic oscillations around their average positions looks like 

this: 
 

si(Q) → si(Q) * exp(-2
2
(U

i
11 h

2
a*

2
 + U

i
22 k

2
b*

2
 + U

i
33 l

2
c*

2
 + 

                                   + 2U
i
13 hl a*c* + 2U

i
12 hk a*b* + 2U

i
23kl b*c*)) 

 

The transformation between B and Ueq (from the Uij calculated isotropic MSD for a sphere 

with identical volume) yields B = 8
2
Ueq. 

For some structures the experimentally determined MSD are significantly larger than from the 

harmonic calculations of the thermal movement of the atoms expected. Such deviations can 

have different reasons: Static local deformations like point defects, mixed compounds, 

anharmonic oscillations or double well potentials where two energetically equal atomic 

positions are very near to each other and therefore distribute the same atom over the crystal 

with a 50%/50% chance to one or the other position. In all those cases an additional 

contribution to the pure Debye-Waller factor can be found which yields an increased MSD. 

Therefore in the following text only the term MSD will be used to avoid misunderstandings. 

3.2 Comparison of X-ray and Neutron Radiation 

X-Ray Radiation interacts as electromagnetic radiation only with the electron density in a 

crystal. This means the shell electrons of the atoms as well as the chemical binding. The 

scattering capability s (atomic form factor f(sin)) of an atom depends on the number Z of 

its shell electrons (f(sin(=0)/λ) =Z). To be exact, f(sin()/λ) is the Fourier transform of the 

radial electron density distribution ne(r): f(sin()/λ)=s ∫
∞

0 4
2
ne(r) sin(µr)/µr dr with 

µ=4sin()/Heavy atoms with many electrons contribute much stronger to reflection 
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intensities (I~Z
2
) than light atoms with less electrons. The reason for the sinλ-dependence 

of f is the diameter of the electron shell, which has the same order of magnitude as the 

wavelength λ. Because of this there is no point-like scattering centre. Thus, for large 

scattering angles the atomic form factors vanish and also the reflection intensities relying on 

them. The atomic form factors are derived from theoretical spherical electron density 

functions (e. g. Hartree-Fock). The resulting f(sinλ)-curves of all elements (separated for 

free atoms and ions) are listed in the international tables. Their analytical approximation can 

be described by seven coefficients (c; ai; bi; 1≤ i ≤ 3) , see [1]. 

 

Neutron Radiation interacts with the cores and the magnetic moments of atoms. The 

analogue to the x-ray form factor (the scattering length b) is therefore not only dependent on 

the element but the isotope. At the same time b-values of elements neighboured in the 

periodic table can differ significantly. Nevertheless, the scattering lengths do not differ around 

several orders of magnitude like in the case of the atomic form factors f. Therefore, in a 

compound with light and heavy atoms the heavy atoms do not dominate necessarily the Bragg 

intensities. Furthermore the core potential with a diameter about 10
-15

Å is a point like 

scattering centre and thus the scattering lengths bn become independent of the Bragg angle 

and sinλ respectively. This results in large intensities even at large scattering angles. The 

magnetic scattering lengths bm can generate magnetic Bragg intensities comparable in their 

order of magnitude to the intensities of core scattering. On the other hand side the magnetic 

scattering lengths are strongly dependent on the sinλ value due to the large spatial 

distribution of magnetic fields in a crystal. Therefore, it is easy to measure magnetic 

structures with neutrons and to separate them from the atomic structure. 

 

Comparison: In summary in the same diffraction experiment the different characters of x-ray 

and neutron radiation yield different pieces of information that can be combined. X-ray 

scattering yield electron densities while neutron scattering reveals the exact nuclear positions. 

This fact is important because for polarised atoms the core position and the centre of gravity 

of electron densities are not identical any more. In compounds with light and heavy atoms 

structural changes driven by light elements need additional diffraction experiments with 

neutrons to reveal their influence and accurate atomic positions respectively. One has to take 

into account also that for x-rays intensities depend twice on sinλ. Once bye the atomic form 

factor f, and twice by the temperature dependent Debye-Waller factor (see above). The first 

dependence vanishes if using neutron diffraction with b=const. and decouples the structure 

factors from the influence of the MSD. In general this yields much more accurate MSD Uij 

especially for the light atoms and might be helpful to reveal double well potentials. 

3.3 Special Effects 

From the relation I~|F|
2
 one can derive that the scattering intensities of a homogenous 

illuminated sample increases with its volume. But there are other effects than MSD that can 

attenuate intensities. These effects can be absorption, extinction, polarization and the Lorentz 

factor: 

 
Absorption can be described by the Lambert-Beer law: 

 

I = I0 exp(-µx) , µ/cm
-1

 = linear absorption coefficient, x/cm = mean path through sample  
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The linear absorption coefficient is an isotropic property of matter and depends on the 

wavelength and kind of radiation. For x-rays penetration depths are only a few millimetre or 

below (e.g. for silicon with µMoK=1.546 mm
-1

, µCuK=14.84 mm
-1

 with penetration depths of 

3 mm and 0.3 mm respectively). This limits transmission experiments to sample diameter of 

typically below 0.3 mm. To correct bias of intensities due to different scattering paths through 

the sample one has to measure accurately the sample size in all directions. Even for sphere 

like samples the mean path lengths depend on 2 In addition the sample environment must 

have an extraordinary small absorption  

Thermal neutrons have for most elements a penetration depth of several centimeters. Thus, 

sample diameters of several millimeters and large and complex sample environments 

(furnaces, magnets, etc.) can be used. On the other hand side one needs sufficiently large 

samples for neutron diffraction which is often a delicate problem.  

 

Extinction reduces also radiation intensities. But the character is completely different form 

that of absorption. In principle extinction can be explained quite easily by taking into account 

that each diffracted beam can be seen as a new primary beam for the neighbouring lattice 

planes. Therefore, the diffracted beam becomes partially backscattered towards the direction 

of the very first primary beam (Switch from kinetic to dynamic scattering theory!). Especially 

for very strong reflections this effect can reduce intensities dramatically (up to 50% and 

more). Condition for this effect is a merely perfect crystal.  

Theoretical models which include a quantitative description of the extinction effect were 

developed from Zachariasen (1962) and Becker and Coppens [2, 3, 4, 5, 6]. These models 

base on an ideal spherical mosaic crystal with a very perfect single crystal (primary 

Extinction) or different mosaic blocks with almost perfect alignment (secondary Extinction) 

to describe the strength of the extinction effect. In addition, it is possible to take into account 

anisotropic extinction effect if the crystal quality is also anisotropic. Nowadays extinction 

correction is included in most refinement programs [7]. In general extinction is a problem of 

sample quality and size and therefore more commonly a problem for neutron diffraction and 

not so often for x-ray diffraction with much smaller samples and larger absorption.  

 

Polarisation: X-ray radiation is electromagnetic radiation. Therefore, the primary beam of an 

x-ray tube is not polarized. The radiation hits the sample under an diffraction angle of  

where it can be separated into two waves of same intensity, firstly with an electrical field 

vector parallel E|| and secondly perpendicular E towards the -axis. Whilst the radiation 

with E|| will not be attenuated the radiation with E will be attenuated with E → cos(2) E. 

The polarization factor P for the attenuation has then the following formula (I ~ E
2
): 

 

P = (1+cos(2)
2
)/2 

 

Additional optical components like monochromator crystals also have an impact on the 

polarization and have to be taken into account accordingly. 

  

Lorentz factor: The Lorentz factor L is a purely geometrical factor describing that the 

movement during an - and -scan respectively for identical angular speeds Δ/Δt results in 

an effectively elongated stay of the sample in the reflection position towards higher 2 with: 

 

L = 1/sin(2) 
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This has to be taken into account for any kind of radiation in a diffraction experiment. 

 

3.4 Summary of Theory of Method 

The different interactions of x-ray and neutron radiation with the atoms in a crystal make 

neutrons in general the better choice for a diffraction experiment. But on the other hand one 

has to take into account the available flux of x-rays and neutrons respectively. The flux of 

modern neutron sources like the Heinz Maier-Leibnitz neutron source (FRM II) is spread 

around a broad spectrum of neutron energies. In a sharp band of energies/wavelengths, e.g. 

∆/<10
-3

, the flux of neutrons is several order of magnitude smaller than the flux of  x-rays 

of a corresponding synchrotron source or x-ray tube in the laboratory. The reason for this is 

that in an x-ray tube most x-rays are generated in a small energy band, the characteristic lines 

of the tube target (K, K, etc.). Additional metal foils used as filters cut off unwanted 

characteristic lines yielding quasi monochromatic radiation of a single wavelength.  

To use neutrons around a small energy band one has to use monochromator crystals. This 

reduces significantly the number of available neutrons for the diffraction experiment. Thus, 

the weak flux of neutrons and the weak cross sections of neutrons with matter have to be 

compensated by large sample sizes of several millimeters. For the same reason the 

monochromatisation of the neutrons is normally chosen to be not too sharp (resolution about 

∆λ/λ≈10
-2

 – 10
-3

 for neutrons, ∆λ/λ≈10
-5

 – 10
-6

 for synchrotron). 

 

3.5 From Measurement to Model 

To get a structural model from the experimentally collected integral Bragg intensities one 

needs several steps in advance. Firstly on has to make sure that all reflections are measured 

properly (no shading, no λ/2-contamination, no Umweganregung (Renninger effect)). 

Damaged reflections have to be excluded from further treatment. 

During data refinement not only the quantities of the relative intensities but also their errors 

are taken into account. The total statistical error  of an integral intensity Iobs of a reflection 

with ntotal data points Ij is calculated as following (assuming each Ij=Pj+Bj consists of two 

components for profile Pj and background Bj with Iobs=
n_total

j=1 Pj, Ibackground=
n_total

j=1 Bj) [9]: 
 


 = Iobs + (ntotal-nbackground)/nbackground*Ibackground + (k Itotal)

2
 

 

The first two components refer to the error caused by counting statistics only. It contains the 

effective intensity Iobs and the contribution of the background with a statistical correction 

factor. Other effects that influence the reproducibility of a measurement (and thus the total 

error), e. g. specific errors of the instrumental adjustment, are collected in the so called 

McCandlish factor k and contribute also to the total error. Therefore, the total error cannot 

drop below the physically correct limit of the experiment and thus the impact of strong 

reflections does not become exaggerated in the refinement. The determination of k is done by 

measuring the same set of reflections several times during an experiment (the so called 

standard reflections). The mean variation of the averaged value represents k. In addition, 

repeated measurements of standard reflections allow the detection of unwanted changes 

during experiment like structural changes or an unintended change of the sample orientation.  
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To make sure the comparability of all reflections with each other, all intensities and errors are 

normalized to the same time of measurement (or monitor count rate) and undergo the Lorentz 

and (in the x-ray case) polarization correction. 

Finally in advance of the data refinement there can be done by a numerical (e.g. with 

Tbar/DataP, [8]) or an empirical absorption if necessary. The quality of a measurement is 

checked in advance of the data refinement by comparing symmetry equivalent reflections and 

systematic extinctions to confirm the Laue group and space group symmetry. The result is 

written as internal R-value: 

 

Rint = (k=1
m
(j=1

n
k (<Ik>- Ij)

2
))/ (k=1j=1

n
k(Ij

2
)k) 

 

Rint represents the mean error of a single reflection j of a group k of nk symmetry equivalent 

reflections, corresponding to its group and the total number m of all symmetrically 

independent groups. Therefore Rint is also a good mark to check the absorption correction. 

After these preliminary steps one can start the final data refinement. 

At the beginning one has to develop a structural model. The problem with that is that we 

measure only the absolute values |Fhkl| and not the complete structure factor Fhkl = 

|Fhkl|exp() including its phase . Therefore, generally the direct Fourier-transformation of 

the reflection information Fhkl from reciprocal space into the density information  in the 

direct space (electron density for x-rays, probability density of atomic cores for neutrons) with 

 

(x) ~ hkl Fhkl exp(-2(hx+ky+lz)) 

 

is not possible. This can be done only by direct methods like Patterson, heavy atom method or 

anomalous dispersion for x-rays. 

In the so called refinement program a given structural model (space group, lattice constants, 

atomic form factors, MSD, etc.) are compared with the experimental data and fitted. In a leas 

squares routine those programs try to optimize (typically over several cycles) the free 

parameters to reduce the difference between the calculated structure factors Fcalc and 

intensities |Fcalc|
2
 respectively and the experimentally found Fobs and |Fobs|

2
 respectively. To 

quantise the quality of measurement there are several values in use: 

 

1. Unweighted R-value: Ru = hkl |Fobs
2
-Fcalc

2
|/hkl Fobs

2
 

This value gives the alignment of the whole number of reflections without their specific 

errors.  

 

2. Weighted R-value: Rw = (hkl w (Fobs
2
-Fcalc

2
)
2
)/hkl w Fobs

4
 

This value represents the alignment of the whole number of reflections including their 

specific errors or weights (w~1/2
). Sometimes weights are adopted in a way to suppress 

unwanted influence of the refinement algorithm by weak or badly defined reflections.  Be 

aware that such corrections have to be done extremely carefully because otherwise the 

refinement adopts the data to the selected structural model and not the model to the 

experimental data! 

  

3. Goodness of Fit S: S
2
 = (hkl w (Fobs

2
-Fcalc

2
)/(nhkl-reflections - nfree parameter) 

 

S should have a value near one if the weighting scheme and the structure model fit to the 

experimental data set.  
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4 Sample Section 

4.1 Introduction 

La2-xSrxCuO4 is one of the cuprate superconductors with K2NiF4- structure for whose 

discovery the noble prize was granted in 1988 (Bednorz and Müller [10]). Pure La2CuO4 is an 

isolator. Doping with earth alkali metals (Ca
2+

, Sr
2+

, Ba
2+

) on the La
3+

 lattice positions 

generates in dependence of the degree of doping superconductivity. Sr doping of x=0.15 

yields a maximum Tc of 38 K. 

 

Pure La2CuO4 undergoes at Tt-o=530 K a structural phase transition from the tetragonal high 

temperature phase (HTT) 

 

F4/mmm: a=b=5.384 Å, c=13.204 Å, ===90° at T=540 K 

 

to the orthorhombic low temperature phase (LTO)  

 

Abma: a=5.409 Å, b=5.357 Å, c=13.144 Å, ===90° at room temperature.  

 

The phase transition temperature Tt-o drops for La2-xSrxCuO4 with increased doping and 

disappears above x=0.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.. 6 left: J. Birgenau, G. Shirane, HTC Superconductors I, World Scientific (1989) 

Fig.. 6 right: Structural parts of La2CuO4 in the LTO phase 
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Fig. 7 left: tetragonal HTT phase   Fig. 7 right: orthorhombic´LTO phase 

 

4.2 Twinning 

During the transition into the low temperature phase the CuO6 octahedrons are tilted around 

their [010] axis. Thus, the two axes of identical length in the HTT phase, a1 and a2, are not 

equal in the LTO phase anymore. Instead, the longer one becomes the new a axis, the shorter 

one becomes the b axis. Whether a1 or a2 becomes the new a axis depends only on the real 

structure of the crystal, for instance grain boundaries or point defects. Therefore, one can find 

two equivalent crystallographic space groups in the LTO phase:  

 

Abma (a1 → a, a2 → b) and Bmab (a1 → b, a2 → a) 

  

For the structure factors in the LTO is valid: 

 

 FAbma(hkl)=FBmab(khl) 
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  Fig. 8 

(a) orthorhombic distortion with twinning corresponding to a (1-10) mirroring 

(b) corresponding reciprocal lattice 

(c) Overlay of  (110)- and (1-10)-mirroring in reciprocal space 

 

In the HTT phase only reflections with h, k, l of equal parity (g for even, u for uneven) are 

allowed - (uuu) and (ggg). They are called in the following main structure reflections. 

In the LTO phase additional reflections occur, called super structure reflections: In the Abma-

Structure (ugg),  l≠0 and (guu), in the Bmab structure (gug), l≠0 and(ugu).  

Forbidden in both the HTT and the LTO phase are (uug), (ggu), (ug0) and (gu0).  

These extinction rules will become important later.  

In the real structure of the crystal there exist four domain types in total. They are separated 

into two pairs with the couple Abma1/Bmab1 (I/II) with the (1-10) mirror plane as grain 

boundary and the couple Abma2/Bmab2 (III/IV) with the (110) mirror plane as grain boundary 

(fig. 8). 

 

The following overlaps of reflections result from this twinning:  

 

- No splitting of the (00l) reflections, 

- triple splitting of the (hh0) reflections 

- fourfold splitting of the (h00) reflections. 

 

An equal distribution of the volumetric portion of each single domain yields a ratio of 

intensities of 1:2:1 for the triple splitting. The distance ∆ between the centre and the side 
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peaks of a (hkl) reflex gives because of (a+b)/2 = a1/2 an information about the orthorhombic 

a/b splitting. For the triple splitting of a (hh0) reflex is valid: 

 

∆ = 90°-2arctan(b/a) 

 

Thus, although the real crystal is twinned, one can quantify the orthorhombic distortion. 

 

The intensity contribution of the single domains corresponding to the whole intensity of a 

reflection can be described (taking into account the incoherent overlap of single intensities 

and the volumetric portions VA1 to VB2 of the domains) as follows: 

 

Iobs(hkl)            = IAbma1(hkl)  + IBmab1(hkl)  + IAbma2(hkl)  + IBmab2(khl) or  

 

Vtotal|Fobs(hkl)|
2
=VA1|FAbma1(hkl)|

2
 +VB1|FBmab1(hkl)|

2
 + VA2|FAbma2(hkl)|

2
 +VB2|FBmab2(hkl)|

2
  

 

  = (VA1 + VA2)|FAbma1(hkl)|
2
 + (VB1|+ VB2)|FBmab1(hkl)|

2
  

 

  = Vtotal {|FAbma(hkl)|
2
 + (1-) |FAbma(khl)|

2
 }  

 

with  being the relative portion of the volume of Abma domains to the crystal..  

 

Because of the extinction rules in the LTO phase for the super structure reflections is valid: 

Iobs(hkl) ~ |FAbma(hkl)|
2
 for Abma and Iobs(hkl) ~ (1-|FAbma(khl)|

2
 for Bmab. Thus, one can 

classify directly intensities to the volumetric portions of the domain types Abma and  Bmab  

respectively. Therefore, by using one single additional parameter  to describe the relation 

between the twins in the structure one can determine the orthorhombic single crystal 

structure! This holds true although the Bragg reflections contain contributions of up to four 

different domains. 
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4.3 Oxygen Position 

The oxygen atoms undergo the largest shift of their positions during the transition to the LTO 

phase. For the structure factor of any Bragg reflection forbidden in F4/mmm is valid: 

 

 

F(hkl) ~ i si exp(-2(hxi+kyi+lzi) =F(hkl)apex oxygen+F(hkl)in plane oxygen+F(hkl)structure w/o O  

                                                        →F(hkl)apex oxygen+F(hkl)in plane oxygen 

 

In the LTO phase the atomic position of the apex oxygen is (x 0 z), the atomic position for the 

in-plane oxygen is (1/4 1/4 -z). This yields the following intensities for the superstructure 

reflections: 

 

F(hkl)apex oxygen = cos(2hx)cos(2lz) for h even or 

F(hkl)apex oxygen =  sin(2hx)cos(2lz) for h uneven 
 

In the case of x-rays the form factor fi~Zi, Zi=order number is much smaller for oxygen 

(Z=16) than for Cu (Z=29) and La (Z=57). Because of Iobs(hkl) ~ |F(hkl)|
2
 the oxygen shift is 

hardly measurable. In the case of neutrons the scattering lengths bi of all atoms are in the 

same order of magnitude (bO=5.803 barn, bCu= barn, bLa= barn, 1 barn = 10
-24

 cm
-2

). 

Therefore, the intensity contribution of the oxygen atoms increases in relation to the other 

elements in the structure and allows a much more precise determination of the structural 

change of the oxygen positions 

5 Preparatory Exercises 

1. What is the fundamental difference between powder/single crystal diffraction and 

what are the advantages and disadvantages of both techniques (Compare d-values and 

orientations of different reflections in a cubic structure)? 

2. What is wrong with fig. 2? 

3. Which reflections are not allowed in a face centered structure (structure factor)? 

4. There is no space group F4/mmm in the international tables. Why (Which other space 

group in the international tables yields the same pattern in direct space)? 
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6 Experiment Procedure 

During this practical course not all physical and technical aspects of structure analysis with 

neutrons can be discussed in detail. Nevertheless this course is supposed point out the basic 

similarities and dissimilarities of x-rays and neutron radiation as well as their specific 

advantages and disadvantages in general and referring to single crystal diffraction. The 

sample selected for this practical course is most suitable for this purpose because of its special 

crystallographic peculiarities.  

6.1 The Instrument 

Fig. 5 shows the typical setup of a single crystal diffractometer with a single detector. 

Outgoing from the radiation source a primary beam defined by primary optics (in our case the 

beam tube) reaches the single crystal sample. If one lattice plane (hkl) fulfils Braggs laws, the 

scattered beam, called secondary beam, leaves the sample under an angle 2 to the primary 

beam. The exact direction of this beam depends only on the relative orientation of the sample 

to the primary beam.  

For the diffractometer shown in fig. 5 the movement of the neutron detector is limited to a 

horizontal rotation around the 2 axis. Thus, only those reflections can be measured, whose 

scattering vector Q lies exactly in the plane defined by the source, the sample and detector 

circle. This plane is also called scattering plane.  

 
Fig. 5: Scheme of a single crystal diffractometer 
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To direct the secondary beam towards the detector position one has to orient the sample 

around the three axes ,  and . These three axes allow a virtually random orientation of the 

crystal in the primary beam. During the experiment the sample has to stay exactly in the cross 

point of all four axes (2,  and ) and the primary beam. Additionally, for 2 =  = 

 = 0° the primary beam direction and the  axis on one hand side and the 2-, - and -axes 

on the other hand side are identical while the angle between the primary beam and the 2-is  

exactly 90°. Because of the four rotational axes (2, , ) this kind of single crystal 

diffractometer is often called four circle diffractometer. Another often used geometry - the so 

called geometry - will not be discussed in detail here. 

 

Further details of the experimental setup: 

 

1. Beam source and primary optics: The primary beam is generated by a suitable source (x-

rays: x-ray tube, synchrotron; neutrons: nuclear fission, spallation source). The primary optics 

defines the path of the beam to the sample in the Eulerian cradle. Furthermore, the primary 

optics defines the beam diameter using slits to make it fit to the sample size for homogeneous 

illumination. This homogeneity is very important because the quality of the data refinement 

relies on the comparison of the intensity ratios between the different reflections measured 

during an experiment. Wrong ratios caused by inhomogeneous illumination can yield wrong 

structural details! Other components of the primary optics are collimators defining beam 

divergence and filters or monochromators which define the wavelength  of the radiation. 

 

2. Sample and sample environment: The sample position is fixed by the centre of the 

Eulerian cradle which is defined by the cross point of the axes  and .  As described 

above, the cradle itself has in combination with the -circle the task to orient the sample 

according to the observed reflection in a way that it hits the detector. The sample itself is 

mounted on a goniometer head. This head allows the adjustment of the sample in all three 

directions x; y; z, via microscope or camera. To avoid scattering from the sample 

environment and goniometer head the sample is usually connected to the head via a thin glass 

fibre (x-rays) or aluminium pin (neutrons). This reduces significantly background scattering. 

For experiments at high or low temperatures adjustable cooling or heating devices can be 

mounted into the Eulerian cradle. 

 

3. Secondary optics and detector: The 2 arm of the instrument hold the detector which – 

in the ideal case – catches only radiation scattered from the sample and transforms it to an 

electrical signal. There exists a variety of detectors, single detectors and position sensitive 1D 

and 2D detectors. Area detectors have a large sensitive area that allows the accurate 

observation of spatial distribution of radiation. Other components of the secondary optics are 

slits and collimators or analyser (as optional units). They fulfil the task to shield the detector 

from unwanted radiation like scattering from sample environment, scattering in air, wrong 

wavelengths or fluorescence 
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6.2 Sequence of measurement in Theory  

1. Centering: In advance of the planned scientific program (profile analysis, Bragg data 

collection) the orientation of the sample in relation to the coordinate system of the 

diffractometer has to be determined. First of all the sample has to be centered optically to 

assure a homogeneous illumination of the sample. Afterwards, a reflection search routine has 

to be started to optimize the intensity of a found reflection by moving several angles after 

each other.  

In many cases there are some structural information like the unit cell and hkl values of strong 

reflections available from previous studies, e.g. from powder diffraction, thus, one can limit 

the reflection search to 2 values around these strong reflections to spare some time and to 

classify manually the found reflections with the correct indices. 

 

2. Determination of orienting matrix and lattice constants: The comparison of the Q 

vectors of the found and centered reflections yields generally one or more suggestions for a 

suitable unit cell. This is done by a least squares routine minimizing the error bars between 

the calculated and measured Q vectors.  This method allows to determine accurately the 

orientation matrix Mo = (a* b* c*)
T
 of the sample relative to the coordinate system of the 

diffractometer and the lattice constants of the unit cell.  

 

On HEiDi the axes are defined as following: x=primary beam, z || 2 axis, y=z x x.  

A proposed unit cell is only acceptable if all experimentally found reflections can be indexed 

with integer hkl , this means Q = (h k l)*Mo. In addition the found reflection intensities I offer 

a course check, e.g. whether extinction rules are followed or intensities of symmetrically 

identical reflections are identical. 

 

3. Profile analyses and scan types: During profile analysis reflex profiles are analysed via so 

called  scans. During this scan the sample is turned for n steps around a center position 0. 

This scan makes different crystallites in one large sample visible. In addition one has to take 

into account that even in perfectly grown crystals there are grain boundaries and slight 

mismatches of the crystallites. These mosaic blocks are perfect crystals whose orientations are 

misaligned only a few tenths of a degree or less. By the way, the axis position 22= is 

called the bisecting orientation of the Eulerian cradle.  

As long as the vertical aperture is large enough, a rotation of the crystal around a 0, that is 

equivalent to the ideal 0 Bragg angle of a reflex allows to catch the intensity portion of each 

crystallite in the sample in the neutron detector on the fixed 2 position, even those that can 

only be found for slightly differing . Therefore, a crystal with large mosaicity gives 

measurable intensities over a broader  area than a perfect crystal. Thus it gives a broader 

reflex profile. Also the tearing and cracking of a crystal creates broad but irregular profiles. 

Beside the crystal quality also the instrumental resolution limits the measurable profile widths 

in the following sense: The divergence of a primary beam in real experiment is limited, for 

instance to 0.2°.  

If a reflection fulfils Bragg’s Law at  the total divergence is a convolution of the divergence 

of the primary beam and the mosaicity/divergence of the sample. Thus, the reflection profile 

will never be sharper than the divergence of the primary beam itself. 

In addition one has to take into account that for larger diffraction angles a fixed detector 

window will not be sufficient to catch the whole reflection intensities during a rocking scan. 
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For a given spectrum ∆/ of the primary beam, with increasing scattering angle  angular 

range ∆ increases with sin(∆2)=tan()*∆/ for which all wavelengths in the interval 

±∆/ fulfilling Bragg’s law are distributed. Because of the limited width of the detector 

window this yields a cut off of intensities for larger scattering angles for -scans. 

To compensate this cut off effect it is necessary to begin at a certain 2-angle to move the 

detector window with the -angle.. This can be done by so called /2-scans. The start 

position of this 2range depends on the primary beam divergence and sample quality and has 

to be checked individually for each sample. 

  

4. Collection of Bragg reflections: If a sample was found good after the described 

preliminary studies one can start with the Bragg data collection. In this data collection all (or 

selected) reflections in a given 2 interval are collected automatically. The usual strategy 

follows the rule „Only as many as necessary“. This means the following: On one hand side 

the quality of the measured reflections has to fulfil certain standards (like small standard 

deviations  and a good shape of the profiles) to reach an acceptable accuracy. On the other 

side there is only a limited amount of time available for each reflection due to the huge 

number of them (up to several thousands). and the limited beam time. A rule of thumb is 

therefore to measure about 10 non symmetry equivalent reflections for each free parameter 

used in the data refinement to get the correct structure. To achieve this goal a typical 

algorithm is to do a prescan with tmin per point of measurement in combination with a given 

larger (e.g. I/=4 and 25%, respectively) and a smaller  (e.g. I/=20 and 5%, respectively) 

relative error limit. tmin is chosen in a way that the statistics of strong reflections is fine 

already after the prescan. Weak reflections are also noticed in the prescan and stored as weak 

reflections without additional treatment. To improve the statistics of those reflections in 

between one performs a second scan with a limited amount of time up to tmax- tmin. This 

method avoids spending unreasonable beam time to weak reflections which will not help to 

improve the quality of the structure model. 

6.3 and in Practice 

1. Adjust optically the sample in the neutron beam: Alignment of the sample in the 

rotational centre of the instrument. This is necessary for a homogeneous illumination of 

the sample for all possible orientations. 

 

2. Search for Bragg reflections and center them, ‚ “Reflex centering”: Sample and 

detector position are controlled by special diffractometer software. The main goal is to 

find suitable angular positions for the detector first and afterwards for the sample to get a 

measurable signal. Afterwards the orientation of the sample in the Eulerian cradle has to 

be optimized for maximum intensity. 

 

3. Analyse profiles of selected reflections: Study different reflex profiles and reveal the 

impact of twinning 

 

4. Determine the orthorhombic lattice parameters a, b and c:  Estimate the misalignment 

between a and b in reference to a1/2 in the real tetragonal cell. 
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5. Determine the average tetragonal unit cell: The centering of different reflections allows 

the calculation of all lattice constants including the averaged tetragonal parameters. 

 

6. Observe super structure reflections: Measuring pairs of (hkl)/(khl) allows the estimation 

of the volumetric contribution of each single domain to the whole crystal. 

 

7. Select measurement parameters for Bragg data collection: In order to optimize the 

number and statistical quality of collected Bragg reflections suitable scan parameters 

(time/step, no. of steps, step widths, etc.) have to be determined. 

 

8. Collect a Bragg data set  

6.4  Data analysis 

After having measured a Bragg data set one has to do the final step, the alignment of model 

and measurement: 

 

1. Data Reduction: In this process the measured reflection profiles are analysed and 

reduced to a simple list of all measured reflections and their integrated intensities 

including error bars and some other useful information. This so-called hkl-list is the base 

for the next step: 

 

2. Structure refinement: Here the measured hkl-list and our structure model are combined 

to determine structural details like atomic positions and mean square displacements.  

7 Experiment-Related Exercises 

1. Why is the optical adjustment of the sample so important? 

2. How large is the a/b-splitting at room temperature (=|a-b|/(a+b))? 

3. What is the benefit/enhancement of studying the room temperature structure with 

neutrons instead of X-rays? 



22  M. Meven 

References 
 

[1]  Th. Hahn (ed.), Space-group symmetry, International Tables for Crystallography 

Vol. A, Kluver Academic Publishers (2006). 

[2]  W.H. Zachariasen, Acta Cryst. 18, 703 (1965). 

[3]  W.H. Zachariasen, Acta Cryst. 18, 705 (1965). 

[4]  P. Coppens and W.C. Hamilton, Acta Cryst. A 26, 71-83 (1970). 

[5]  P.J. Becker and P. Coppens, Acta Cryst. A 30, 129-147 (1974). 

[6]  P.J. Becker and P. Coppens, Acta Cryst. A 30, 148-153 (1974). 

[7]  U.H. Zucker, E. Perrenthaler, W.F. Kuhs, R. Bachmann and H. Schulz J. of Appl. 

Crystallogr., 16, 358 (1983). 

[8]  P. Coppens, W.C. Hamilton, S. Wilkins, M.S. Lehmann and Savariault, Datap, 

http://www.ill.fr/data treat/diftreat.html#single (1999). 

[9]  M.S. Lehmann, F.K. Larsen, Acta Cryst. A 30, 580-584 (1974) 

[10] J. Bednorz and K. Müller, Z. Phys. B 64, 189 (1986). 

 

Literature 

 

N.W. Ashcroft and N.D. Mermin, Festkörperphysik, Oldenbourg 2001. 

H. Ibach and H. Lüth, Festkörperphysik, Einführung in die Grundlagen, 6. Edition Springer 

2002. 

C. Kittel, Einführung in die Festkörperphysik, 10. Edition, Oldenbourg 1993. 

W. Borchardt-Ott, Kristallographie. Eine Einführung für Naturwissenschaftler, 6. Auflage 

Springer 2002. 

W. Kleber, Einführung in die Kristallographie, Oldenbourg 1998 

H. Dachs, Neutron Diffraction, Springer (1978) 

D.J. Dyson, X-Ray and Electron Diffraction Studies in Material Science, Maney Pub 2004. 

C. Giacovazzo, Fundamentals of Crystallography, 2nd Ed., Oxford University Press 2002. 

L.A. Aslanov, Crystallographic Instrumentation, Oxford University Press 1998. 

M.T. Dove, Structure and Dynamics. An Atomic View of Materials, Oxford University Press 

2003. W. Clegg, Crystal Structure Analysis. Principles and Practice, Oxford University Press 

2001. 



HEiDi  23 

Appendix (Tables and space groups from [1])
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