J-NSE “PHOENIX”

Neutron Spin Echo Spectrometer

O. Holderer and S. Pasini

Julich Centre for Neutron Science gﬁ_@'

Forschungszentrum Julich

Manual of the JCNS Laboratory Course Neutron Scattering. This is an Open Access publication
distributed under the terms of the Creative Commons Attribution License 4.0, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Contents

1 Introduction ........ ..ottt iiiiiiieeeeeens 3
2 Neutron Spin Echo Spectroscopy ...........ccoooiiiiiiiiiiia... 3
2.1  Separation of coherent and incoherent scattering. . . .................. 6
3 Polymer dynamics ...........ccoiiiiiiiiiiiiiiiiiiernnnnnnnnn, 6
3.1 RousedynamicCs . ... ......utiiiit e 7
3.2 ZImMmAynamiCs . ... ...t e 8
33 Centerof massdiffusion .. ............... ... .. ... .. ... ... 9
4 Preparatory €Xercises ...........cceeeiiiiiiieeeeeeeeennnnnnaanns 9
5 Experiment procedure .............cooiiiiiiiiiiieeeeeeaann. 10
5.1  Theexperimentitself ......... ... .. ... ... . . . .. ... 10
5.2 DatareduCtion. . ..........oiiiiiiii i 10
5.3 Dataevaluation . ............ .. e 11
6 Experiment related exercises .................coiiiiiiiiiii.... 11
References. ........coiiiiiiiiiiiiiiiiiiieeeeeeeeeensneenneannnnns 12

1) 1 1 ot /PN 13



J-NSE “PHOENIX” 3

1 Introduction

Neutron spin echo spectroscopy provides the highest energy resolution in neutron scattering.
The covered energy range (or Fourier time range) matches excellently thermally driven motions
in soft matter systems such as polymer chains in solution, in the melt, domain motions of
proteins, phospholipid membrane fluctuations to mention just a few. This experiment aims to
study the dynamics of a polymer chain in solution. Poly(ethylene propylene) (PEP) with a
molecular weight of 100 kg/mol is dissolved in deuterated decane with a concentration of 3%.
The dynamics of PEP polymer in solution will be studied at room temperature. The results will
be interpreted in terms of the Zimm model, which allows to draw conclusions about the internal
motions of the polymer chains.

2 Neutron Spin Echo Spectroscopy

The neutron spin echo technique uses the neutron spin as an indicator of the individual velocity
change the neutron suffered when scattered by the sample. Due to this trick NSE accepts a
broad wavelength band and at the same time is sensitive to the velocity changes down to 107>,
However, the information carried by the spins can only be retrieved modulo an integer number
of spin precessions and thus it is retrieved as intensity modulation proportional to the cosine
of a precession angle difference. The measured signal is the cosine transform 1(Q,t) of the
scattering function S(Q,w). All spin manipulations only serve to establish this special type of
velocity analysis. For details see Reference [1].

Due to the intrinsic Fourier transform property of the NSE instrument it is especially suited
for the investigation of relaxation-type motions, which contribute at least several percent to the
entire scattering intensity at the momentum transfer of interest. The Fourier transform property
yields the desired relaxation function directly without numerical transformation and tedious
resolution deconvolution. The resolution of the NSE may be corrected by a simple division.

The NSE instrument (see Figure 1) consists mainly of two large solenoids that generate the
magnetic field that causes the precession of neutron spin (precession field). The precession
of the spin is limited by 7/2-flippers, which are in front of the entrance and respectively exit
of the first and second main solenoids; the m-flipper is located near the sample position. The
embedding fields for the flippers are generated by Helmholtz-type coil pairs around the flipper
locations. After leaving the last flipper the neutrons enter an analyzer containing 60 (30 x 30
cm?) magnetized CoTi supermirrors located in a solenoid set. These mirrors reflect only neu-
trons of one spin direction into the multidetector. Figure 1 (middle) shows the layout of the
solenoids, the bottom part the engineering design of the J-NSE spectrometer. The main preces-
sion coils providing the strong precession region, are superconducting and fully compensated
(no dipolar stray fields) in order to minimize the mutual influence of the different spectrometer
components.

Depending on its velocity, each neutron undergoes a number of precessions in the first solenoid
before hitting the sample. After the scattering process the w-flipper inverts the spin orien-
tation so that the rotation in the second solenoid exactly compensates the first if the speed
of the neutrons is not changed by the scattering (purely elastic process), whereas inelasti-
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cally scattered neutrons collect a different phase angle of rotation, AV ~ Av/v?~ .J, with
v = 2m x 2913.06598 x 10*s~! T~! and J being the magnetic field integral (the integrated
magnetic field a neutron experiences during its flight through the field). The distribution of
the velocity changes Awv of neutrons that experienced an energy transfer during scattering at
the sample — in terms of its cos-Fourier transform — is measured as polarization of the neutron
beam at the end of the second solenoid after the last 7/2-flipper. Small velocity changes are
proportional to the small energy changes hw, w being the frequency of the Fourier transform.
The time parameter (Fourier time) is proportional to A3.J and here in first instance is controlled
by the current setting of the main coils, which determins the field integral .J.

" o'm

Fig. 1: Working principle of the NSE spectrometer showing the spin precessions along the
flight path for the velocity encoding/decoding (top), the magnetic layout of the actual J-NSE
spectrometer with all solenoids (middle) and the engineering design of the actual J-NSE spec-
trometer (bottom) [2, 3].

The polarization is determined by scanning the magnetic field in one of the main coils with the
so-called phase coil. If first and second arm are symmetric, a maximum of the polarization is
measured. However, if the phase of the spins is shifted by 180 degree by variation of the field
of one coil, one gets to a minimum of intensity. With a 360 degree variation one gets to the
next maximum and so on. These oscillations are shown in Figure 2. The amplitude of such an
echo is normalized to the difference between maximum intensity (up-value), where all flippers
are switched off, and the minimum intensity where only the m-flipper is switched on (down-
value). Assuming that this normalization accounts for all imperfections of the polarization
analysis in the instrument, the result yields the desired degree of polarization reduction due to
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inelastic/quasielastic scattering of the sample. Since the thus determined polarization reduction
also contains the effects due to field integral inhomogeneity a further normalization step is
needed, which is equivalent to a resolution deconvolution in a spectroscopic instrument as e.g.
the backscattering spectrometer. In order to be able to perform this resolution correction the
same experimental and data treatment procedure has to be carried out with an elastic scatterer.
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Fig. 2: Echo group measured with the NSE instrument.

For a given wavelength the Fourier time range is limited to the short times (about 3 ps for J-NSE
instrument @ MLZ) by the lower limit of the field integral and to long times by the maximum
achievable field integral / = [ Bdl. The lower limit results from the lowest field values that
are needed as “guide” field in order to prevent neutrons from depolarization effects. The upper
limit results either from the maximum field that can be produced by the main solenoid, or by
the maximum field integral inhomogeniety (— variation of precession angle between different
paths within the neutron beam) that can be tolerated respectively corrected for, depending which
condition applies first. The J-NSE may achieve a J = 1 Tm corresponding to t = 96 ns at A = 8

The scattering vector () is determined by the angle 26 of the second arm of the spectrometer with
respect to the first one by () = 47 /A sin(6) (Bragg equation). The Fourier time ¢ is proportional
to the magnetic field of the main solenoids. At a given scattering vector (), the magnetic field
is successively increased and an echo group is recorded for each setting to obtain /(Q,t) as a
function of ¢.



6 O. Holderer and S. Pasini

2.1 Separation of coherent and incoherent scattering

By the use of polarized neutrons it is possible to separate the coherent and spin incoherent part
of the scattering, since the incoherent scattering changes the polarisation to —1/3. For different
scattering vectors () the scattering intensity is measured, once in the spin-up configuration and
once in the spin-down setup. In the spin-up configuration all spin flippers are switched off and
the longitudinal, in forward direction (i.e. parallel to the magnetic field) polarized beam can
pass through the spectrometer. The analyzer in front of the detector transmits those polarized
neutrons. The measured intensity at the detector in this configuration is the maximum possible
intensity. In the spin-down configuration only the 7 flipper at the sample position is switched
on, which rotates the neutron spin orientation by 180°. The spin direction is now against the
magnetic field direction and in the ideal case the analyzer completely absorbs the neutrons,
so that the minimal possible detector intensity is measured. Omitting background effects and
assuming perfect flipping ratio (ratio spin-up/spin-down = oo in the direct beam) coherent and
incoherent scattering contributions can be separated as follow (with Up: detector intensity in the
diffraction run with all flippers off, Down: detector intensity in the diffraction run with only
7 flipper at sample position on, /.,: coherent scattered intensity, /;,.: incoherent scattered
intensity):

Up + Down = Icoh + [inc (1)
Up — Down = I.op — 1/31pc 2)

which gives
Up = Icoh + 1/3[znc (3)
Down = 2/31;. 4)

respectively
Line = 3/2Down 5)
Lo = Up —1/2Down 6)

To include non-ideal flipping ratio and background count rate the calculation is more difficult.

3 Polymer dynamics

There are different models to describe the dynamics of large molecules. A nice overview is
given in the book “Neutron Spin Echo in Polymer Systems”, which is also available online [4],
as well as in laboratory course lectures, chapter 13.

The conformation of a linear polymer chain follows a random walk, this means a chain segment
of length [ can move freely around the neighboring segment (within the limitation of chemical
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bonds). With a set of segment vectors r, = R, — R,,_1, where R,, is the position vector
of segment n, the distance between segments, which are n steps apart, follows a Gaussian

distribution [4]:
3 \*? 3R2
(R, n) = (27ml2) P (_ 2nl2) 0

By summing up the scattering amplitudes of the centres of the segments of a polymer chain
with the correct phases, one obtains the scattering function of the polymer chain (see Lecture
on Dynamics of Macromolecules for more details):

with [ the segment length.

N

1@.t) = (Y expliQ- (Ru(t) — Ron(1))]) ®)

n,m=1

A snapshot of the chain, i.e. the static structure factor, is obtained for ¢ = 0. One gets the well
known Debye funktion:

I(Q) = NfDebye(Q2R§) (9)

2
fDebye(x) = ﬁ(eﬁ —1+ux) (10)

with R, the radius of gyration of the chain.

3.1 Rouse dynamics

In the Rouse model the Gausssian polymer chain is described as beads connected by springs.
The springs correspond to the entropic forces between the beads and the distance between the
beads corresponds to the segment length of the polymer. The polymer chain is in a heat bath.
The Rouse model describes the movement of the single chain segments of such a polymer chain
as Brownian movement. Thermally activated fluctuations (by the stochastic force f,(¢) with
< £,(t) >= 0), friction force (with friction coefficient ¢) and the entropic force determine the
relaxation of polymer chains.

The movement of the chain segments is described by a Langevin equation:

drR, oU

T TR, = 1,.(1) (1D

The Langevin equation can be solved and one can calculate with equation 8 the intermediate
scattering function, which is measured by NSE (for details, see the lecture on “Dynamics of
Macromolecules”):

1(Q,t) = exp(—Q*Dt) Lintern(Q, 1) (12)

with a diffusive part with a relaxation rate proportional to Q* and the part describing the internal
relaxation, which can be written for QRg >> 1:

Tontern(Q, 1) = Qlfp /0 " duexp(—u — /(Tot)h(u/\/(Tat) (13)
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Fig. 3: Schematic representation of the polymer chain in the Rouse model [4] as a Gaussian
chain with beads connected by springs.

with the relaxation rate

_ FT e
Ig= 12¢ Q7 (14)
and 5
h(u) = %/dx cos(zu)(1 — e /2 (15)

Note that the local relaxation rate depends on Q*. When I(Q,t)/I(Q,0) is plotted against the
Rouse variable |/I'gt, all curves collapse onto a master curve if the Rouse model holds.

With this model, for example, the dynamics of short polymer chains in the melt can be de-
scribed. With increasing molecular weight some other effects like the constraints imposed by
mutual entanglements of the polymer chains become important, which are described in the rep-
tation model by de Gennes (Nobel prize 1991). In this experiment polymers in solution, not
in the melt, are considered. The Rouse model then needs to be extended by hydrodynamic
interactions as will be described in the following section.

3.2 Zimm dynamics

Polymers in solution can be described by the Zimm model, where hydrodynamic interaction be-
tween the chain segments mediated by the solvent are dominant. Moving chain segments exert
forces on other segments due to the flow of the surrounding solvent. Within some approxima-
tions the system can be described by a Langevin equation analogous to that of the Rouse model
which includes the friction coefficient { = 6mna,., with 7 the viscosity of the solvent. The main
modification is the inclusion of the hydrodynamic interaction represented by an Oseen tensor
to account for the forces acting to neighbouring beads via the flow field of the solvent. More
details can be found in Reference [4].

The intermediate scattering function can be written again in the form of Equation 12, with a
global diffusion of the whole particle, and the internal polymer fluctuations e (Q,t). An
approximation to e (Q,t) of the Zimm model is a stretched exponential function which

reads 5
kgTQ3t
[intern<Q7 t) = €xXp <_ ( 271'73) ) > (16)
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Fig. 4: Calculated I(Q,t) with the Zimm model (left) and resulting effective diffusion (I'/Q?).

with b ~ 1.354 and 5 ~ 0.85. The relaxation rate of a polymer chain in this model, I' =
kpT@Q3t/(67n), is mainly determined by the viscosity of the solvent. Internal dynamics is
dominant at higher scattering vectors (9, where also the typical (Q° dependence of the relaxation
rate can be observed. At smaller scattering vectors the contribution from the center of mass
diffusion is more prominent so that rather a (Q* dependence of the relaxation rate is expected.

Figure 3.2 shows the calculated 1(Q,t) for a series of Q-values (i.e. scattering angles instrument)
which will be measured in the labcourse with the NSE spectrometer, together with the resulting
relaxation rate divided by Q2. This should be constant for simple diffusing processes. The
linear increase indicates the Q*-depencence which is characteristic for Zimm dynamcis.

3.3 Center of mass diffusion

With NSE spectroscopy the movements on length scales in the order of nanometer and time
scales in the order of nanoseconds can be observed. This matches e.g. the center of mass
diffusion of macromolecules in solution or micelles. The mean square displacement of a par-
ticle is < r%(t) >= 6D¢yt with the diffusion constant Deys = kgT/(67nR¢), where R is
the hydrodynamic particle radius and 7 the viscosity (Stokes-Einstein-relation). The dynamic
structure factor which is measured by NSE is then

1(Q,1)/1(Q,0) = exp (—1/6 < r*(t) > Q%) = exp (—DcnQ’t) (17)

This result can be obtained again by the Langevin equation of a particle undergoing Brownian
motion in a solvent. A simple diffusion process therefore has a quadratic dependence on the the
scattering vector ().

4 Preparatory exercises

1. How fast do neutrons with a wavelength of 8 A fly?
2. What is the value of the earth’s magnetic field?

3. What is the magnetic field at the surface of a common permanent magnet?
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4. How many mm fall neutrons on their way from the entrance of the spectrometer to the
detector (about 7 m) due to gravity?

5. How many precessions does a neutron of A = 8 A perform in the main coils if the Fourier
time is set to 20 ns? (Angle ¥ = /v [ Bdl).

S Experiment procedure

5.1 The experiment itself

First, the function of the key components of the neutron spin-echo spectrometer will be
explained and demonstrated.

The generation of the ”Spin Echo” will be demonstrated with an auxiliary phase coil, wound
around one of the main precession coils with a simple wire. With a laboratory DC-powersupply
connected to this coil, the magnetic field inside this main coil is slightly varied. A fully sym-
metrical setup with identical magnetic path integrals in both main coils results in a maximum
count rate at the detector. Increasing the current in the auxiliary coil from this point results in
an additional phase shift of the neutron spin and thus the intensity varies from the maximum to
a minimum and further to the next maximum and so on. In this way, the echo group is scanned.

e The frequency of the oscillation (i.e. the current needed to go from one intensity maxi-
mum to the next maximum), depends on the field integral and on the wavelength of the
neutrons. Approximating the field integral of a current loop allows thus to determine the
wavelength of the neutrons in this experiment. This will be done with the recorded data.

The experimental sample under investigation is a polymer chain (PEP, polyethylenepropylene)
with a molecular weight of 100 kg/mol in solution (deuterated decane). The PEP concentration
is 3 wt %. The first experiment with the sample is to measure the elastic scattering by recording
the spin-up and spin-down intensity at the detector.

e The coherent and incoherent scattering of the sample shall be extracted from this reading
and plotted versus the scattering vector ().

The dynamics of the sample is measured. For some selected scattering vectors (), a series of
Fourier times is measured for the sample, for a background sample containing everything but
the objects under investigation, in this case the pure deuterated solvent (d-decane), and for an
elastic scatterer as reference.

5.2 Data reduction

Each Fourier time is determined by measuring 2-3 oscillations of the echo bunch and fitting
the theoretical curve (a cosine oscillation with a gaussian envelope) to the measured points.
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In short, the normalized amplitude of the fitted curve is the degree of polarization obtained in
this measurement. This elaborated fitting procedure is done with a program called drspine,
which creates the files containing the intermediate scattering function 7(Q,t)/1(Q,0).

5.3 Data evaluation

The I(Q,t) vs. t is contained in the files report_ XXXXX.dtr as ascii-data.

e Read in the data with some data treatment program (e.g. free software gt 1iKWS10).

e Try to fit the data. First use a simple exponential function 7(Q,t) = Aexp (—I't) and
determine the relaxation rate I'. For diffusion like behaviour with the Stokes-Einstein
diffusion coefficient, ' = DQ? should be valid. Plot I'/Q? vs. Q to check the validity of
the model. It also allows for the determiation of the hydrodynamic radius of the particle
assuming a viscosity of d-decane of n = 0.954 x 1073 kg/(ms).

e Use a stretched exponential function as model function: 1(Q,t) = Aexp (—[I't]?) and
determine the relaxation rate I and the stretching exponent 3. The Zimm model would
predict that the rate depends on the viscosity  as I' = kpT'/(671)Q3. What is the
viscosity of d-decane? Does the ()-dependence of the model describes that of the data
correctly (i.e. is T'/Q3 = const.)?

6 Experiment related exercises

Data evaluation (the bullet points in section 5):

1. Separate coherent and incoherent scattering from the elastic scan (diffrun) and plot it.

2. Evaluate the data containing /(Q,t)/1(Q,0) vs ¢t with the models as described in the
previous section and discuss the results.

General questions:

1. Why are no iron yoke magnets used in the construction of a NSE spectrometer?
2. What is the maximum field inside the main precession coils of the J-NSE?
3. What determines the resolution of the spin echo spectrometer?

4. How does the signal look like if the scattering is spin-incoherent? (Hint: in this case 2/3
of all neutron spins get flipped in the scattering process.)

5. What is the measured effect of the spin echo spectrometer?

6. What is measured finally?
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