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Introduction 

This experiment is intended to familiarize you with the possibilities which neutron diffraction 
and namely the STRESS-SPEC diffractometer offers to residual stress analysis. Residual 
stresses are self-equilibrating stresses in a body that is stationary and at equilibrium with its 
surroundings.  
Mechanical stresses in solids are connected via their elastic material properties to elastic 
lattice strains, i.e. to the changes of distances and relative positions of the atoms in the 
crystal lattice. In this respect diffraction-based techniques are powerful methods for an 
engineer since they are able to quantify the distances between atomic planes accurately, 
providing a nondestructive probe for elastic strain and thus stress characterization. In 
particular, the penetration depth of thermal neutron radiation into matter makes neutron 
diffraction an increasingly important technique in assisting engineering design and the 
advancement of engineering materials. Evaluation and interpretation of the results of 
diffractometric strain and stress analysis requires fundamental knowledge on definitions and 
concepts of elasticity theory, which will be illustrated in the following chapter. In context of 
this tutorial, however, we forgo a detailed description of scattering theory in polycrystalline 
materials (Bragg scattering) and refer to corresponding textbooks on solid state physics [1,2]. 
 

Basic Principles 

Residual stresses arise because of shape misfits (sometimes called “eigenstrains”) between 
the unstressed shapes of different parts, different regions, or different phases of the 
component. They may be categorized by cause (e.g. thermal or elastic mismatch), by the 
scale over which they self-equilibrate, or according to the method by which they are 
measured.  
To illustrate and define the stress components we consider a small cube with face areas A 
within a homogeneously stressed body, Figure 1. The cube is aligned to the axes of the 
coordinate system X, Y, Z (Figure 1). Each face is characterized by one of the unit vectors X, Y, 
Z or -X, -Y, -Z. Firstly we regard the faces towards the positive directions. The surrounding 
material will excert forces Fi on the face i of the cube. The forces are proportional to the 
surface area A. Each of the forces Fi can be partitioned in components parallel to the three 
coordinate axes. The stress component 𝜎𝑖𝑗 is then defined to be the force per area acting on 

the face i in direction j:  
 

𝜎𝑖𝑗𝑚𝑗 =
F𝑖

A


 




Figure 1 – Definition of residual stress tensor 
 
 

 

For instance, 𝜎𝑥𝑥 is acting on the X-face in x-direction, 𝜎𝑦𝑧 acts on the Y-face in z-direction. 

𝜎𝑖𝑗 (𝑖 = 𝑗) are called normal components, because the respective forces act perpendicular 

(normal) to a face, the 𝜎𝑖𝑗 (𝑖 ≠ 𝑗) are called shear components, they act parallel to a face. 

Since the small cube is assumed to be homogeneously stressed, the forces on the three 
opposing sides are of the same amount but of opposite direction. The condition of force 
equilibrium of the stressed volume element account for the symmetry: 𝜎𝑖𝑗 = 𝜎𝑗𝑖 . The stress 

components 𝜎𝑖𝑗form a symmetrical tensor of second rank with 9 components. 

If a body is stressed, each point 𝑥 within the body undergoes a displacement 𝑢 and the 
material experiences a strain. In the following discussion displacement and strain are 
assumed to be small. For the one dimensional case ( e.g.  a string with the initial length 𝐿0) 
the strain is defined as  𝜀(𝑥) = 𝑑𝑢 𝑑𝑥⁄ . If 𝜀 is homogeneous, i.e. it does not depend on 𝑥, 
one obtains: 


𝜀 =
(𝐿 − 𝐿0)

𝐿0

=
∆𝐿

𝐿0





 



In three dimensions the strain tensor describes the change of the volume of one volume 
element and also forms a symmetrical second rank tensor with 9 components.. Because of 
the symmetry conditions 𝜎𝑖𝑗 = 𝜎𝑗𝑖 and 𝜀𝑖𝑗 = 𝜀𝑗𝑖, only 6 of the 9 components are 

independent and are thus sufficient to describe the stress and strain state at a point in the 
material. 
 

Elastic material properties 

When a body underlies certain stresses, the strain response depends on the elastic 
properties of the material. The strain can be of elastic and of plastic kind. 
 



𝜀 = 𝜀𝑒𝑙. + 𝜀𝑝𝑙. 
 
When stresses are released, the elastic strain will vanish and the plastic part will remain. For 
stresses not exceeding the yield limit of the material, the strain response is only elastic. If the 
elastic strains are sufficiently small, they depend linearly on the applied stresses. In practise 
this is valid in most cases. In the one-dimensional case the Young's modulus 𝐸 connects the 
stress and the strain (Hooke's law): 
 

𝜎 = 𝐸𝜀 
 
𝐸 is the Young Modulus (usually given in [GPa]) 
 
The most general linear relation between the stress and the strain tensor is given, when 
each stress component depends linearly on all the 9 strain components. There are 9 
equations with 9 independents. 
 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙  

 
This relation defines the 4th rank tensor of elastic stiffnesses, it has 34 = 81 components 
𝑐𝑖𝑗𝑘𝑙. The stress as well as the strain tensor is symmetric, and so also the elastic stiffness 

tensor can be written symmetrical: 
𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 , 

which reduces the number of independent components to 21. The number of independent 
components is further reduced by symmetry of the crystal lattice. This leaves in case of an 
elastically isotropic material with cubic symmetry only two independent components; for 
further details see references [2-4]. The elastic behavior of such an isotropic body is then 

fully described by the Young's modulus 𝐸 and the Poisson's ratio . 
 

Nature and origin of residual stresses 

All stress states within a material which are independent of outside forces are called residual 
stresses. The average of the residual stresses taken over each cross section of the body has 
to be zero. Examples how residual stresses arise are illustrated in Figure 2. They originate 
from misfits between different regions. In many cases, these misfits span large distances, for 
example, those caused by the non-uniform plastic deformation of a bent bar. They can also 
arise from sharp thermal gradients, for example, those caused during welding or heat 
treatment operations (Figure 2). These stresses can be advantageous, as in the case of shot 
peening (mechanically induced) and toughening of glass (thermally induced). 
 



 
Figure 2 – Typical examples of residual stress origins: misfits between different 

regions of the material or between different phases within the 
material. Schematic illustration of macro and micro residual stresses 
[2] 

 
The stresses are commonly divided into three classes, or types, by the length scales over 
which they vary and over which they self-equilibrate, and are labelled as  type I, type II, and 
type III stresses. They are often categorized as macrostresses (Type I) and microstresses 
(types II and III). Type I stresses self-equilibrate over a length which is comparable to the 
macroscopic dimension of the structure or component in question. Type II stresses self-
equilibrate over a length scale comparable to that of the grain structure. They arise from 
misfits having a characteristic length scale, comparable to the grain size of polycrystalline 
solids, usually a few tens of microns. Type III stresses self-equilibrate over a length scale 
smaller than the characteristic length scale of the microstructure; that is, the grain size or 
the fiber/particle spacing for composite materials. These could be stresses varying within a 
specific grain, such as due to grain subdivision into smaller cell structures. In the case of real 
materials, the actual residual stress state at a point is the superposition of stresses of type I, 
II and III stresses, as illustrated in Figure 3. In a diffraction experiment both type I and the 
average type II stresses for the particular grain set will cause a shift of the Bragg reflections, 
while type III stresses can be only identified due to the broadening of the interference line. 
As diffraction is phase specific it can be exploited for multiphase materials to provide 
information on the residual stress state of the individual crystalline phases separately. Figure 
3 shows schematically how the overall stress state is composed in a two-phased material. 
 



 
Figure 3 – Schematic representation of the 3 types of residuals stresses in a two-

phase material (phases α and β) [5]. 
 

Basic equation for residual stress analysis by diffraction 

The Bragg equation is, in its simplicity, the essential basis for diffraction-based techniques 
for strain and hence residual stress characterization. 
Changes in inter-planar spacing 𝑑ℎ𝑘𝑙 of atoms, Figure 4(a), can be used with the Bragg 
equation to measure elastic strain 𝜀 through the knowledge of the incident wavelength 𝜆 
and the change in the Bragg scattering angle ∆𝜃. 
 

𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃ℎ𝑘𝑙  
 
giving  
 

𝜀ℎ𝑘𝑙 =
∆𝑑ℎ𝑘𝑙

𝑑ℎ𝑘𝑙
= − cot 𝜃ℎ𝑘𝑙∆𝜃ℎ𝑘𝑙  

 
For calculating strain it is necessary to have an accurate measure of the stress free 
spacing 𝑑0,. The strain results can then be converted into stress using a suitable value of the 
stiffness. 
 
A typically neutron diffractometer for strain measurements, in this case at steady state 
reactor, is shown in Figure 4 (b). A beam of polychromatic neutrons emanating from the 
neutron source impinges on the monochromator which reflects a monochromatic beam 
according to Bragg’s law. A small fraction of the beam hitting the sample is diffracted. As the 
incident beam is monochromatic, the diffracted beam is confined to a well-defined direction, 
again given by Bragg’s law. Finally, the diffracted beam is recorded by a neutron detector. 
Collimators placed before and after the monochromator and after the sample define the 
angular spreads of the neutron beam in the horizontal and in the vertical plane, respectively. 
To achieve the necessary spatial resolution for strain mapping the relatively wide beam 
generated by a typical neutron monochromator is narrowed down by a slit, a few 



millimeters wide, placed just before the sample. Similarly, the diffracted beam is confined by 
another slit placed just after the sample. These two slits define the gauge volume which is 
normally much smaller than the sample itself. Strain mapping over the entire sample is then 
done by moving the sample stepwise with respect to the gauge volume. 
The direction in which the lattice strain 𝜀ℎ𝑘𝑙 is measured is parallel to the scattering vector 
Q. In order to determine the strain in different directions in the sample, the sample must be 
rotated accurately about the center of the gauge volume so that each required direction is 
parallel to Q. 
 

(a) (b) 
Figure 4 - (a) Illustration of diffraction by a lattice plane. (b) Schematic 

representation of a strain instrument on a steady state neutron source 
[2]. 

 
This requires very careful alignment and centering of the sample, and is a major challenge to 
the instrument designer and to the experimentalist. 
 
Figure 5 shows the general case of a strain measurement of a plate sample where the strain 
is measured for crystallographic planes {hkl} which are perpendicular oriented to the 

direction () within the diffractometer coordinate system. Using the generalised form of 
the Hooke’s law and the so called diffraction elastic constants (taking into account the elastic 
anisotropy of the crystal) the strain and stress component can be related: 
 

 
Figure 5 - Coordinate system for residual stress measurements. 
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with 
 

𝑆1
ℎ𝑘𝑙 =

γℎ𝑘𝑙

Eℎ𝑘𝑙
 

and 
1

2
𝑆2

ℎ𝑘𝑙 =
γℎ𝑘𝑙 + 1

Eℎ𝑘𝑙
 

 
 
In many cases symmetry considerations enable assumptions about the principal stress and 
strain directions to be made, and then the elaborate and time-consuming process of 
measuring the full strain tensor based on six or more measurements is avoided. In this case, 
only the three orthogonal principal strain components need to be determined. 
 

𝜎𝑥𝑥 =
Eℎ𝑘𝑙

(1 + γℎ𝑘𝑙)
[𝜀𝑥𝑥 +

γℎ𝑘𝑙

1 − 2γℎ𝑘𝑙
(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧)] 

 

Penetration depth 

Thermal neutrons have the advantage over X-rays that for wavelengths comparable to the 
atomic spacing, their penetration into engineering materials is typically many centimeters 
instead of a few tens of µm. The true absorption of thermal neutrons by matter is due to 
nuclear reactions: for most elements the absorption is weak (in particular for C, O, Al, Fe, Zr, 
Nb, Pb). In some cases, however, the absorption by nuclear reactions is very high (e.g. B, Cd, 
Gd). In Figure 6 the material thickness of different materials necessary to attenuate the 

neutron beam by 50% (λ= 1.8 Å), is shown. 
 



 
Figure 6 - Material thickness required to attenuate the beam by 50% [5]. 
 
The linear absorption coefficient µ is dependent on the wavelength and obeys the 
exponential law: 
 

𝐼 = 𝐼0exp (−𝜇. 𝑥) 
 
x is the neutron path length within the sample and µ the absorption coefficient of the 
material. The absorption coefficient can be calculated by: 
 

μ = ∑ 𝜌

𝑔𝑒𝑠

 

where  
 
𝜌 is the atom density [Atom/cm3] 

ges is the total absorption cross section [barn] 

ges is constituted by  

∑

ges

= σinc + σabs(λ) + σcoh 



σcoh = πr(2R)2 =4 πb2 

 
where  
σinc is the incoherent cross section [barn = 100 fm2] 

σabs(λ) is the absorption cross section for a specific wavelength [barn] 

σcoh is the coherent cross section [barn]  

R = b = neutron scattering length [fm]  

 

Neutron scattering length b is defined by the radius of the effective cross section 

 

 

Question: 
1. Before starting the experiment, please determine the absorption coefficients of 

aluminum (Al) and iron (Fe) using the data of table 1. 
 

2. Inform yourself about the definition of a cubic crystal system, lattice type and Miller 
indices. With this you should be able to calculate the optimal wavelength for which the 
diffraction angle of the Al (311) and Fe (211) lattice planes will be found at around 90°. 

 
 
Experimental setup 
 
The materials science diffractometer STRESS-SPEC is located at the thermal beam port SR-3 
of the FRM II and can easily be configured either for texture analysis or strain 
measurements. The different instrument components are shown schematically in Figure 7: 



 
Figure 7 - Schematic representation of the material science diffractometer STRESS-SPEC 
 
In the beam tube SR-3 there is a collimator drum which enables us to use the neutron beam 
with the natural collimation of the beam tube (ca. 60’), or collimatiors of 25’ and 15’ when 
reduction of the beam divergence is necessary. The monochromator shielding allows 
continuous variation of the wavelength by setting the monochromator at the respective 
Bragg diffraction condition: 
 

𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃ℎ𝑘𝑙  
 
This selection of monochromators and the possibility to vary automatically the take-off 
angles from 2θM = 35° to 110° allows to find a good compromise between resolution and 
intensity for each measuring problem. In addition this particular feature results from the 
necessity for strain measurements that adjustment of a suitable wavelength offers the 
possibility to perform measurements around 2𝜃 = 90°. This is important with regard to 
spatial resolution for measurements of components, since the volume element is kept cubic 
for all required measuring directions at the case of 2𝜃 = 90°. 
 
For high resolution experiments like for instance ceramic materials a good definition of the 
wavelength and therefore high take-off angles of the monochromator up to 120° are 
required. In cases where high intenisties are required, i.e. texture measurements of metallic 
materials, small take-off angles of the monochromator are preferable.  
 

Sample stage 

For strain mapping a high precision sample stage is necessary to align and adjust the 
components.  The translation device (x,y,z) available at STRESS-SPEC allows  sample 

positioning with an accuracy better than 10 m for components as heavy as 300 Kg. 
 

 



Slits and adjustment system 

The gauge volume dimension can be defined continuously in the incoming (primary) beam 
up to 7 x 17 mm2 (WxH) and for the diffracted (secondary) beam side continuously up to 
15 mm. Radial collimators with a FOV of 5 mm, 2 mm and 1 mm are available. For the 
precise adjustment of the sample a laser and and further optical systems are installed. 
 

Detector 

A two dimensional position sensitive 3He- detector is used with a detection area of 
25 x 25cm2 divided in 256 x 256 Pixel. The distance between the sample table centre and 
detector is variable between 0.75 m until 1.7 m. 
 
 
  



Description of the experiment 
 
The material science diffractometer STRESS-SPEC is built and optimized for measuring the 
complete residual stresses tensor of relevant industrial components. To avoid complexity of 
this tutorial the analysis the complete residual stress tensor will not be carried out. 
All measurements in this experiment will be carried out using the standard control and 
analysis software. Because of the instrument complexity an instrument scientist will be 
allays present during the tutorial. 
 
Following experiments will be performed in this tutorial: 
 
1 Experimental determination of the absorption cross sections of aluminum and iron -  

by means of intensity measurement of samples with different thickness. 
 
2. Experimental extraction of diffraction elastic constants of different lattice planes Fe 

(220) and Fe (211) using a tensile text rig. 
- Mount the extensometer on the sample and the sample into the tensile rig. 
- Adjust the sample position. 
- While tensioning the sample start aquiring diffraction data for the (211) reflection. 

The measurements are carried out along the tension direction. The strains should be 
calculated using the first measuring point without force as a reference value. Repeat 
the measurements for the (220) reflection using a new sample. 

- Calculate the diffraction elastic constant of the measured lattice plane from the in-
situ diffraction data. 

 
3. Spatial resolved measurement of iron bar sample, which was deformed by four point 

bending, along its cross section. 
- Mount the sample at the sample table. 
- Align and adjust the sample. Choose a suitable Bragg reflection. 
- Write a scan script to measure the spatial resolved measurement steps along the 

sample cross section. 
-  Fit the Bragg reflections for each measuring step. This data will be used to calculate 

the starin across the bar and from the strain the residual stress. 
 
 
Analysis/Experimental Report 
As usual at the end of an experimental work, the analysis of the results and a brief report of 
what was done is mandatory. If during the experiment a protocol is written, the effort will be 
considerably reduced when writing the report afterwards. Try to be concise and clear in the 
report and perform a proper error calculation.  
 
In detail: 
 

1. Calculate the absorption coefficient from the measured curves for each sample and 
compare the obtained value with the one found in preparation of this experiment. 

2. Draw a strain-stress diagram from the measured data of the (220) and (211) 
reflections. Calculate for each set the (phase specific) diffraction elastic constants, 



Ehkl. Compare the experimental calculated diffraction elastic constant with the 
macroscopic elastic module, of steel. Discuss your findings. 

3. Calculate the residual stress profile along the cross section of the bent bar sample 
using microscopic elastic modulii obtained in 2. A reference value for calculating the 
stress can be obtained when assuming mechanical equilibrium along the cross 
section of the sample. Discuss your findings and why mechanical equilibrium is 
appropriate here. 

 
Help: Additional and more detailed information on the four point bending test can be found 
in references [4,5]. 
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