Physics with Neutrons II, SS 2016

Lecture 1, 11.4.2016

Lecture: Monday 12:00-13:30, PH227
Sebastian Mühlbauer (MLZ/FRM II)
Sebastian.muehlbauer@frm2.tum.de
Tel:089/289 10784

Tuturials: Friday 12:00-13:30, 2224 (E21)
(first tutorial 24.4.2016)
Lukas Karge
Lukas.karge@frm2.tum.de
Tel:089/289 11774
http://wiki.mlz-garching.de/n-lecture02:index

Suggested:

Seminar Methoden und Experimente in der Neutronenstreuung (PH-E21-1), Wednesday 9:00-10:30, PH2224, (Start 20.4.2016) P. Böni, S. Mühlbauer, C. Hugenschmidt

Lecture Grundlagen zur Instrumentierung mit Neutronen Thursday, 8:30-9:00, PH2224, (Start 21.4.2016) P.Böni

Seminar Neutrons in Science and Industry (PH-21-4), Monday 14:30-15:45, HS3, (Start 11.4.2016) Organization: P.Böni, W.Petry, T. Schöder, T. Schrader

- VL1: Repetition of winter term, basic neutron scattering theory
- VL2: SANS, GISANS and soft matter
- VL3: Neutron optics, reflectometry and dynamical scattering theory
- VL4: Diffuse neutron scattering
- VL5: Cross sections for magnetic neutron scattering
- VL6: Magnetic elastic scattering (diffraction)
- VL7: Magnetic structures and structure analysis
- VL8: Polarized neutrons and 3d-polarimetry
- VL9: Inelastic scattering on magnetism
- VL10: Magnetic excitations Magnons, spinons
- VL11: Phase transitions and critical phenomena as seen by neutrons
- VL12: Spin echo spectrocopy

Heinz Maier-Leibnitz Zentrum

Essence of a neutron scattering experiment

Fundamental principle of a neutron scattering experiment

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Basic neutron scattering theory

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Fermis Golden Rule

Fermis Golden Rule for scattering process: Born approximation

Challenge: Rewrite this mixed expression in terms of sample properties

Box Integration

$1^{\text {st }}$ step: Box Normalization to calculate ρ_{k}

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\lambda \rightarrow \lambda^{\prime}}=\underline{\left.\frac{k^{\prime}}{k}\left(\frac{m}{2 \pi \hbar}\right)^{2}\left|\left\langle k^{\prime} \lambda^{\prime}\right| V\right| k \lambda\right\rangle\left.\right|^{2}, ~}
$$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Energy Conservation, Integration

$2^{\text {nd }}$ step: Energy conservation

$$
\begin{gathered}
\left.\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}\right)_{\lambda \rightarrow \lambda^{\prime}}=\frac{k^{\prime}}{k}\left(\frac{m}{2 \pi \hbar}\right)^{2}\left|\left\langle k^{\prime} \lambda^{\prime}\right| V\right| k \lambda\right\rangle\left.\right|^{2} \underline{\delta\left(E_{\lambda}-E_{\lambda^{\prime}}+E-E^{\prime}\right)} \\
\int \delta\left(E_{\lambda}-E_{\lambda^{\prime}}+E-E^{\prime}\right)=1
\end{gathered}
$$

$3^{\text {rd }}$ step: Integration with respect to neutron coordinate r

$$
\left\langle k^{\prime} \lambda^{\prime}\right| V|k \lambda\rangle=\sum_{j} V_{j}(\kappa)\left\langle\lambda^{\prime}\right| e^{i \kappa R_{j}}|\lambda\rangle \frac{V_{j}(\kappa)=\int V_{j}\left(x_{j}\right) e^{i \kappa x_{j}} \mathrm{~d} x_{j}}{\kappa=k-k^{\prime}}
$$

Interaction $=$ Fourier transform of the potential function

Heinz Maier-Leibnitz Zentrum

Fermi Pseudopotential

$4^{\text {th }}$ step: Ansatz: Delta function potential for single nucleus

$$
V(r)=a \delta(r)
$$

Fermi pseudopotential: $V(r)=\frac{2 \pi \hbar^{2}}{m} b \delta(r)$
\square b can be bound or free scattering length!
Fermi pseudopotential does NOT represent physical reality

$$
\left.\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}\right)_{\lambda \rightarrow \lambda^{\prime}}=\frac{k^{\prime}}{k}\left|\sum_{j} b_{j}\left\langle k^{\prime} \lambda^{\prime}\right| e^{i \kappa R_{j}}\right| k \lambda\right\rangle\left.\right|^{2} \delta\left(E_{\lambda}-E_{\lambda^{\prime}}+E-E^{\prime}\right)
$$

Heinz Maier-Leibnitz Zentrum

Integral Representation of Delta Function

$5^{\text {th }}$ step: Integral representation of the delta function for energy.
Idea: Stick all the time dependence into the matrix element

$$
\delta\left(E_{\lambda}-E_{\lambda^{\prime}}+E-E^{\prime}\right)=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{i\left(E_{\lambda}-E_{\lambda^{\prime}}\right) t / \hbar} e^{-i \omega t} \mathrm{dt}
$$

H is the Hamiltonian of the scattering system with Eigenfunctions λ and Eigenvalues E_{λ}

$$
H|\lambda\rangle=E_{\lambda}|\lambda\rangle
$$

$$
\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}\right)_{\lambda \rightarrow \lambda^{\prime}}=\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} \int_{-\infty}^{\infty}\langle\lambda| e^{-i \kappa R_{j^{\prime}}}\left|\lambda^{\prime}\right\rangle\left\langle\lambda^{\prime}\right| e^{i H t / \hbar} e^{i \kappa R_{j}} e^{-i H t / \hbar}|\lambda\rangle e^{-i \omega t} \mathrm{~d} t
$$

No terms of λ and λ^{\prime} outside the matrix element anymore!

Sum Over Final States

6th step: Sum over final states, average over initial states

$$
\begin{gathered}
\sum_{\lambda^{\prime}}\langle\lambda| A\left|\lambda^{\prime}\right\rangle\left\langle\lambda^{\prime}\right| B|\lambda\rangle=\langle\lambda| A B|\lambda\rangle \\
p_{\lambda}=\frac{1}{Z} e^{\frac{-E_{\lambda}}{k_{b} T}} \\
\langle A\rangle=\sum_{\lambda}\langle\lambda| A|\lambda\rangle
\end{gathered}
$$

Stick the time evolution into the operator for the $\quad R_{j}(t)=e^{i H t / \hbar} R_{j} e^{-i H t / \hbar}$ position R_{j}

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}=\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} \int_{-\infty}^{\infty} \frac{\left\langle e^{-i \kappa R_{j^{\prime}}(0)} e^{-i \kappa R_{\jmath}(t)}\right\rangle}{\text { Correlation function }} e^{-i \omega t} \mathrm{~d} t
$$

Coherent/Incoherent Scattering

Assume a large sample with statistically variations of b_{j}

$$
\overline{b_{j^{\prime}} b_{j}}=\left(\overline{b^{2}}\right), j^{\prime}=j
$$

Double differential crosssection spilts up into two terms:

$$
\begin{gathered}
\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}\right)_{\text {coherent }}=\frac{\sigma_{\text {coh. }}}{4 \pi} \frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} \int_{-\infty}^{\infty} \underline{\left\langle e^{-i \kappa R_{j^{\prime}}(0)} e^{-i \kappa R_{j}(t)}\right\rangle} e^{-i \omega t} \mathrm{~d} t \\
\left(\frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}\right)_{\text {incoherent }}=\frac{\sigma_{\text {inc. }}}{4 \pi} \frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} \int_{-\infty}^{\infty} \frac{\left\langle e^{-i \kappa R_{j}(0)} e^{-i \kappa R_{j}(t)}\right\rangle}{} e^{-i \omega t} \mathrm{~d} t \\
\sigma_{\text {coh. }}=4 \pi \bar{b}^{2} \quad \sigma_{\text {inc. }}=4 \pi\left(\overline{b^{2}}-\bar{b}^{2}\right)
\end{gathered}
$$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Coherent/Incoherent Scattering

Coherent

Spatial and temporal correlations between different atoms
\square Interference effects:
\Rightarrow Given by average of b Bragg scattering

Incoherent

Spatial and temporal correlations between the same atom
\Rightarrow Constant in Q
Given by variations in b due to spin, disorder, random atomic motion....

Neutron diffraction on crystals

Heinz Maier-Leibnitz Zentrum

Elastic Scattering, Diffraction on Crystals

Starting point: Coherent elastic cross-section

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}=\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} \int_{-\infty}^{\infty}\left\langle e^{-i \kappa R_{j^{\prime}}(0)} e^{-i \kappa R_{j}(t)}\right\rangle e^{-i \omega t} \mathrm{~d} t
$$

Sample: Single X-tal in thermal equilibrium, consider static correlations!

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\int_{\infty}^{\infty} \frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}} \mathrm{d}(\hbar \omega)=\sum_{j, j^{\prime}} b_{j} b_{j^{\prime}}\left\langle e^{-i \kappa R_{j^{\prime}}} e^{-i \kappa R_{j}}\right\rangle
$$

Drop the operator formalism for R_{j} as we look at static correlations $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}{ }_{\text {coh.el }}=\langle b\rangle^{2} \sum_{j, j^{\prime}} e^{-i \kappa\left(R_{j^{\prime}}-R_{j}\right)}$
\square Information on the position of the atoms
$\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}_{\text {inc. }}=\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) \sum_{j=j^{\prime}} e^{-i \kappa\left(R_{j}-R_{j}\right)}=N\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right)$
Isotropic, constant elastic background
Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Elastic Scattering, Diffraction on Crystals: Lattice Sums

What we used:

Our sample is a periodic crystal!

Crystal= Basis+lattice
$\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}{ }_{\text {coh.el }}=\langle b\rangle^{2} N_{0} \sum_{T} e^{i \vec{K} \vec{T}}$ with $\quad \overrightarrow{R_{j^{\prime}}}-\vec{R}_{j}=\vec{T}$
Lattice sum: $\quad \sum_{l} e^{i \vec{l} \vec{l}}=\frac{(2 \pi)^{3}}{v_{0}} \sum_{\vec{\tau}} \delta(\vec{\kappa}-\vec{\tau})$
Real space lattice
Reciprocal space lattice

Lattice Sums \& Reciprocal Lattice

Braggs law: $\quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}{ }_{\text {coh.el }}=N_{0} \frac{(2 \pi)^{3}}{v_{0}}\langle b\rangle^{2} \sum_{\vec{\tau}} \delta(\vec{\kappa}-\vec{\tau})$
Scattering occurs when κ meets a vector of the reciprocal lattice T
Reciprocal lattice vectors T are perpendicular to a corresponding lattice plane indexed by the Miller index ($\mathrm{h}, \mathrm{k}, \mathrm{l}$) and

$$
d_{(h, k, l)}=\frac{2 \pi}{\left|\vec{\tau}_{h, k, l}\right|}
$$

Structure Factor

More than one atom in the unit cell:

$$
\vec{R}=\overrightarrow{l_{j}}+\overrightarrow{d_{\alpha}}
$$

$\overrightarrow{l_{j}}$ Position of the j-th unit cell
$\overrightarrow{d_{\alpha}}$ Position of the a-th atom in the unit cell

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}{ }_{\text {coh.el }}=N_{0} \frac{(2 \pi)^{3}}{v_{0}} \underline{\left|\sum_{\vec{d}} b_{d} e^{i \kappa \vec{d}}\right|^{2}} \sum_{\vec{\tau}} \delta(\vec{\kappa}-\vec{\tau}) \\
S_{\vec{\tau}}=\sum_{\vec{d}} b_{d} e^{i i \vec{d} \vec{d}} \\
\begin{array}{l}
\text { Structure factor (sum } \\
\text { over one unit cell) }
\end{array}
\end{array}
$$

Master Formula for Neutron Diffraction

Going from operator to standard vector notation of R_{j} :
\Rightarrow Neglected thermal vibration of atoms around their equilibrium position!

$$
2 W(\vec{\kappa})=\frac{1}{3} \kappa^{2}\left\langle u^{2}\right\rangle
$$

Debye-Waller factor describes mean dispalcement $\left\langle u^{2}\right\rangle$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Monochromatic vs. TOF vs. Laue

Monochromatic beam

Ewald construction Less intensity Rocking curve gives intensity of Bragg peak Clean data

Time-of-flight (TOF)

Ewald construction for
\square each wavelength in the beam
\square Rocking curve distributed in time and detector
ζ Waste less neutrons

Laue (polychromatic beam)

Essentially white beam More Bragg peaks (not stronger)
5 Hard to get intensities
Large background

Heinz Maier-Leibnitz Zentrum

Inelastic neutron scattering: Coherent excitations - Phonons

Basic idea: Phonons in a linear chain

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Properties of Phonons

Collective excitation of atoms
"Live" in the first Brillouin zone
Description as dilute, non-interacting phonon gas"
Quasiparticles (3 N phonons for N atoms)
Follow quasi-continuous dispersion relation Obey Bose-Einstein statistics (specific heat!) 3 phonon branches (3p-3 optical, 2 transverse acoustic, 1 longitudinal acoustic for P -atomic basis)
QM picture (raising and lowering operator)

FRM II

Inelastic scattering: Phonon dispersion

diamond: fcc, basis: (000), $(1 / 41 / 41 / 4), T=296 \mathrm{~K}$, shell model fits

For X-ray data see: E. Burkel, Inelastic Scattering of X-Rays with Very High Energy Resolution, Springer Berlin (1991)
Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

FRM II

Reminder: Phonon DOS, specific specific heat, Debye approximation

Van Hove singularities are kinks or discontinuities in the density of states due to flat portions of the dispersion curves.

Inelastic scattering: Cross-section for phonon emission/absportion
Time dependendent position operator $\quad \hat{\boldsymbol{R}}_{j}(t)=l_{j}+\hat{u}_{j}(t)$

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}=\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} e^{\imath Q \cdot\left(l_{j}-l_{j^{\prime}}\right)} \int_{-\infty}^{\infty}\left\langle e^{-\imath Q \cdot \hat{u}_{j^{\prime}}(0)} e^{\imath Q \cdot \hat{u}_{j}(t)}\right\rangle e^{-\imath \omega t} \mathrm{~d} t .
$$

Displacement expressed in terms of normal mode (QM harmonic oscillator)

$$
\hat{u}_{j}(t)=\sqrt{\frac{\hbar}{2 M N}} \sum_{s, \boldsymbol{q}} \frac{e_{s}(\boldsymbol{q})}{\sqrt{\omega_{s}(\boldsymbol{q})}}\left(\hat{a}_{s}(\boldsymbol{q}) e^{\left[\boldsymbol{q} \cdot \boldsymbol{l}_{j}-\omega_{s}(\boldsymbol{q}) t\right]}+\hat{a}_{s}^{+}(\boldsymbol{q}) e^{-\imath\left[\boldsymbol{q} \cdot \boldsymbol{l}_{j}-\omega_{s}(\boldsymbol{q}) t\right]}\right)
$$

Ladder operators of QM oscillator

$$
\begin{aligned}
& \hat{a}_{s}^{+}(\boldsymbol{q})\left|\lambda_{n}\right\rangle=\sqrt{n+1}\left|\lambda_{n+1}\right\rangle, \\
& \hat{a}_{s}(\boldsymbol{q})\left|\lambda_{n}\right\rangle=\sqrt{n}\left|\lambda_{n-1}\right\rangle, \\
& \left\langle\lambda_{n}\right| \hat{a}_{s}(\boldsymbol{q}) \hat{a}_{s}^{+}(\boldsymbol{q})\left|\lambda_{n}\right\rangle=n_{s}(\boldsymbol{q})+1 \\
& \left\langle\lambda_{n}\right| \hat{a}_{s}^{+}(\boldsymbol{q}) \hat{a}_{s}(\boldsymbol{q})\left|\lambda_{n}\right\rangle=n_{s}(\boldsymbol{q}),
\end{aligned}
$$

Bose-Einstein statistics of phonons

$$
n_{s}(\boldsymbol{q})=\left(\exp \left(\frac{\hbar \omega_{s}(\boldsymbol{q})}{k_{B} T}\right)-1\right)^{-1}
$$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Inelastic scattering: Cross-section for phonon emission/absportion
Abbreviaton of the exponents

$$
\begin{array}{ll}
\hat{A}=-\imath \boldsymbol{Q} \cdot \hat{\boldsymbol{u}}_{j^{\prime}}(0)=-\imath \sum_{s, \boldsymbol{q}}\left(\alpha_{s}(\boldsymbol{q}) \hat{a}_{s}(\boldsymbol{q})+\alpha_{s}^{*}(\boldsymbol{q}) \hat{a}_{s}^{+}(\boldsymbol{q})\right) & \alpha_{s}(\boldsymbol{q})=\sqrt{\frac{\hbar}{2 M N}} \sum_{s, \boldsymbol{q}} \frac{\boldsymbol{Q} \cdot e_{s}(\boldsymbol{q})}{\sqrt{\omega_{s}(\boldsymbol{q})}} e^{\imath \boldsymbol{q} \cdot l_{\boldsymbol{l}^{\prime}},} \\
\hat{B}=\imath \boldsymbol{Q} \cdot \hat{u}_{j}(t)=\imath \sum_{s, \boldsymbol{q}}\left(\beta_{s}(\boldsymbol{q}) \hat{a}_{s}(\boldsymbol{q})+\beta_{s}^{*}(\boldsymbol{q}) \hat{a}_{s}^{+}(\boldsymbol{q})\right), & \beta_{s}(\boldsymbol{q})=\sqrt{\frac{\hbar}{2 M N}} \sum_{s, \boldsymbol{q}} \frac{\boldsymbol{Q} \cdot e_{s}(\boldsymbol{q})}{\sqrt{\omega_{s}(\boldsymbol{q})}} e^{\imath\left[\boldsymbol{q} \cdot l_{j}-\omega_{s}(\boldsymbol{q}) t\right]}
\end{array}
$$

Taylor expansion of the time evolution

Write linear term in term of sample properties (QM harmonic oscillator!)

$$
\left\langle\lambda_{n}\right| \hat{A} \hat{B}\left|\lambda_{n}\right\rangle=\left\langle\lambda_{n}\right| \sum_{s, q}\left[\alpha_{s}(q) \beta_{s}^{*}(q) \hat{a}_{s}(q) \hat{a}_{s}^{+}(q)+\alpha_{s}^{*}(q) \beta_{s}(q) \hat{a}_{s}^{+}(q) \hat{a}_{s}(q)\right]\left|\lambda_{n}\right\rangle
$$

FRM II

Heinz Maier-Leibnitz Zentrum
Inelastic scattering: Debye Waller factor: Aluminium/Lithium

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Master formula for coherent inelastic scattering
Consider only coherent scattering ($\mathrm{j} \neq \mathrm{j}$ ')

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}= & \frac{1}{4 \pi M} \cdot \frac{k^{\prime}}{k}\langle b\rangle^{2} e^{-2 W(\boldsymbol{Q})} \sum_{s, \boldsymbol{q}} \frac{\left(\boldsymbol{Q} \cdot e_{s}(\boldsymbol{q})\right)^{2}}{\omega_{s}(\boldsymbol{q})} \\
\times & {\left[\left(n_{s}(\boldsymbol{q})+1\right) \sum_{l} e^{\imath(\boldsymbol{Q}-q) \cdot l} \int_{-\infty}^{\infty} \mathrm{d} t e^{\imath\left(\omega_{s}(q)-\omega\right) t}\right.} \\
& \left.+n_{s}(\boldsymbol{q}) \sum_{l} e^{\imath(Q+q) \cdot l} \int_{-\infty}^{\infty} \mathrm{d} t e^{-\imath\left(\omega_{s}(q)+\omega\right) t}\right] .
\end{aligned}
$$

Convert integrals to delta functions using lattice sums (as for diffraction)

$$
\begin{array}{rll}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}= & \frac{4 \pi^{3}}{v_{0} M} \cdot \frac{k^{\prime}}{k}\langle b\rangle^{2} e^{-2 W(\boldsymbol{Q})} \sum_{s, \boldsymbol{q}} \frac{\left(\boldsymbol{Q} \cdot \boldsymbol{e}_{s}(\boldsymbol{q})\right)^{2}}{\omega_{s}(\boldsymbol{q})} \\
& \times \underline{\left[\left(n_{s}(\boldsymbol{q})+1\right) \delta\left(\omega-\omega_{s}(\boldsymbol{q})\right) \sum_{\tau} \delta(\boldsymbol{Q}-\boldsymbol{q}-\boldsymbol{\tau})\right.} & \begin{array}{l}
\text { Phonon } \\
\text { emission }
\end{array} \\
& \left.+n_{s}(\boldsymbol{q}) \delta\left(\omega+\omega_{s}(\boldsymbol{q})\right) \sum_{\tau} \delta(\boldsymbol{Q}+\boldsymbol{q}-\boldsymbol{\tau})\right] . & \begin{array}{l}
\text { Phonon } \\
\text { absorption }
\end{array}
\end{array}
$$

Scattering „triangle" for inelastic scattering

$$
\begin{aligned}
& \text { Example: } \\
& \text { phonon creation } \\
& \qquad \begin{array}{l}
0={ }_{s}(\mathbf{q}) \\
\Rightarrow k_{i}^{2}>k_{f}^{2}
\end{array}
\end{aligned}
$$

Triple axis spectrometer: Workinghorse for phonons and magnons

"Working horse" for phonons/magnons in magnetism/superconductivity Clean data at a fixed point in momentum/energy space
Slow, wasting a lot of neutrons

Cold TAS (PANDA)
A Best energy resolution: $20 \mu \mathrm{eV}$ Energy transfer <20meV Momentum transfer $<6 \AA^{-1}$

Thermal TAS (PUMA) $\square \begin{aligned} & \text { Best energy resolution: } 600 \mu \mathrm{eV} \\ & \text { Energy transfer }<100 \mathrm{meV} \\ & \text { Momentum transfer }<12 \AA^{-1}\end{aligned}$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Triple axis spectrometer: Scattering „triangle" S(q,w)

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Incoherent inelastic: Phonon DOS

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Inelastic incoherent scattering: Phonon DOS
Now consider incoherent scattering ($\mathrm{j}=\mathrm{j}$ ')

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}=\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} e^{-2 W(\boldsymbol{Q})} \sum_{j} b_{j}^{2} \int_{-\infty}^{\infty} e^{\langle\hat{A} \hat{B}\rangle} e^{-\imath \omega t} \mathrm{~d} t
$$

Similar to the coherent part, only consider the linear term in the Taylor expansion

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}= & \frac{1}{2 M} \frac{k^{\prime}}{k}\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) e^{-2 W(\boldsymbol{Q})} \sum_{s, \boldsymbol{q}} \frac{\left(\boldsymbol{Q} \cdot \boldsymbol{e}_{s}(\boldsymbol{q})\right)^{2}}{\omega_{s}(\boldsymbol{q})} \\
& \times \frac{\left[\left(n_{s}(\boldsymbol{q})+1\right) \delta\left(\omega-\omega_{s}(\boldsymbol{q})\right)\right.}{}+\frac{\left.n_{s}(\boldsymbol{q}) \delta\left(\omega+\omega_{s}(\boldsymbol{q})\right)\right]}{\text { Phonon }} \begin{array}{l}
\text { emission }
\end{array} \\
& \begin{array}{l}
\text { Phonon } \\
\text { absorption }
\end{array}
\end{aligned}
$$

Inelastic incoherent scattering: Phonon DOS

Compare to coherent part:

Energy conservation is fulfilled

No momentum conservation is fulfilled

All phonons with energy ω_{s} contribute!

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}=\frac{1}{4 M} \frac{k^{\prime}}{k} & \left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) e^{-W(\boldsymbol{Q})} \\
& \times\left\langle\left(\boldsymbol{Q} \cdot e_{s}(\boldsymbol{q})\right)^{2}\right\rangle \cdot \frac{g(\omega)}{\omega} \cdot\left[\operatorname{coth} \frac{\hbar \omega}{2 k_{B} T} \pm 1\right]
\end{aligned}
$$

With phonon DOS $\mathrm{g}(\omega) \quad \int_{0}^{\infty} g(\omega) \mathrm{d} \omega=3 N$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Inelastic incoherent scattering: Phonon DOS
For a (cubic) Bravais lattice only

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}= & \frac{1}{12 M} \frac{k^{\prime}}{k}\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) e^{-W(\boldsymbol{Q})} Q^{2} \\
& \times \frac{g(\omega)}{\omega} \cdot\left[\operatorname{coth} \frac{\hbar \omega}{2 k_{B} T} \pm 1\right]
\end{aligned}
$$

Inelastic incoherent scattering directly measures phonon DOS $\mathrm{g}(\omega)$

Heinz Maier-Leibnitz Zentrum

Correlation functions of neutron scattering

Heinz Maier-Leibnitz Zentrum

Starting point: General cross-section

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega} & =\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} \int_{-\infty}^{\infty}\left\langle e^{-i \boldsymbol{Q} \hat{R}_{j}(0)} e^{-Q \hat{R}_{j^{\prime}}(t)}\right\rangle e^{-i \omega t} \mathrm{dt} \\
I(\boldsymbol{Q}, t) & =\frac{1}{N} \quad \int_{-\infty}^{\infty}\left\langle e^{-i \boldsymbol{Q} \hat{R}_{j}(0)} e^{-Q \hat{R}_{j^{\prime}}(t)}\right\rangle
\end{aligned}
$$

\square Intermediate scattering function

Fourier transform (space) $\quad G(\boldsymbol{r}, t)=\frac{1}{(2 \pi)^{3}} \int I(\boldsymbol{Q}, t) e^{-i \boldsymbol{Q} r} \mathrm{dQ}$
Pair correlation function

Fourier transform (time) $\quad S(\boldsymbol{Q}, \omega)=\frac{1}{(2 \pi \hbar)} \int I(\boldsymbol{Q}, t) e^{-i \omega t} \mathrm{dt}$
\square Scattering function, directly connected to cross-section

Heinz Maier-Leibnitz Zentrum

Physical meaning of pair correlation function $G(r, t)$

$$
G(\boldsymbol{r}, t)=\frac{1}{N} \sum_{j, j^{\prime}} \int\left\langle\delta\left(\boldsymbol{r}^{\prime}-\hat{\boldsymbol{R}}_{j^{\prime}}(0)\right) \delta\left(\boldsymbol{r}^{\prime}+\boldsymbol{r}-\hat{\boldsymbol{R}}_{j}(t)\right)\right\rangle \mathrm{dr}^{\prime}
$$

Correlation between atom j^{\prime} at
time $t=0$ at position r ' and atom j at time $\mathrm{t}=\mathrm{t}$ and position $\mathrm{r}^{\prime}+\mathrm{r}$

Solits ub in
$G_{s}(\boldsymbol{r}, t)=\frac{1}{N} \sum_{j} \int\left\langle\delta\left(\boldsymbol{r}^{\prime}-\hat{\boldsymbol{R}}_{j}(0)\right) \delta\left(\boldsymbol{r}^{\prime}+\boldsymbol{r}-\hat{\boldsymbol{R}}_{j}(t)\right)\right\rangle \mathrm{dr} \mathbf{r}^{\prime} \quad$ Self correlation function
$G_{d}(\boldsymbol{r}, t)=\frac{1}{N} \sum_{j \neq j^{\prime}} \int\left\langle\delta\left(\boldsymbol{r}^{\prime}-\hat{\boldsymbol{R}}_{j^{\prime}}(0)\right) \delta\left(\boldsymbol{r}^{\prime}+\boldsymbol{r}-\hat{\boldsymbol{R}}_{j}(t)\right)\right\rangle \mathrm{dr} \quad$ ' Correlation function
Coherent and incoherent part

$$
\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}\right)_{\text {coh }}=N \frac{k^{\prime}}{k}\langle b\rangle^{2} S_{\text {coh }}(\boldsymbol{Q}, \omega) \quad\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}\right)_{\text {inc }}=N \frac{k^{k^{\prime}}\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) S_{\text {inc }}(\boldsymbol{Q}, \omega)}{}
$$

Heinz Maier-Leibnitz Zentrum

Neutron scattering on liquids and amorphous materials

Pair correlation function $G(r, t)$ useful for description of liquids

 Liquid (amorphhous) sample $\stackrel{\square}{\square}$ Crystalline sample Similar density, no LRO, only short range correlations

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Static structure factor

Start with $\mathrm{I}(\mathrm{Q}, \mathrm{t})$ and split into into two parts:

$$
\begin{aligned}
& I(\boldsymbol{Q}, t)=\hbar \int S(\boldsymbol{Q}, \omega) e^{\omega t} \mathrm{~d} \omega \\
& I(\boldsymbol{Q}, t)=I(\boldsymbol{Q}, \infty)+I^{\prime}(\boldsymbol{Q}, t) \\
& S(\boldsymbol{Q}, \omega)=\underline{\frac{1}{\hbar} \delta(\omega) I(\boldsymbol{Q}, \infty)}+\frac{1}{2 \pi \hbar} \int \underline{I^{\prime}(\boldsymbol{Q}, t) e^{-i \omega t} \mathrm{dt}}
\end{aligned}
$$

Static structure factor: Looking at deviations of the mean density $n(r)$

$$
\left.G^{\prime}(\boldsymbol{r})=\frac{1}{N} \int\left\langle n\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)-\left\langle n\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)\right\rangle\right)\left(n\left(\boldsymbol{r}^{\prime}\right)-\left\langle n\left(\boldsymbol{r}^{\prime}\right)\right\rangle\right)\right\rangle \mathrm{dr} r^{\prime}
$$

Elastic scattering from liquids

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=N\langle b\rangle^{2}\left(1+\int\left(g(\boldsymbol{r})-n_{0}\right) e^{i \boldsymbol{Q} r} \mathrm{dr}\right.
$$

$g(r)$: pair correlation function

$$
S(Q)=1+4 \pi \int_{0}^{\infty}\left(g(r)-n_{0}\right) \frac{\sin Q r}{Q r} r^{2} \mathrm{~d} r
$$

Static structure factor: Looking at deviations of the mean density $n(r)$

Static structure factor: Scattering function

$g(r)$ pair correlation function:
Deviations from mean density $n(r)$.

Limit $\mathrm{Q}->0 \quad \mathrm{~S}(\mathrm{Q}=0)=1$
Limit $Q->\infty \quad S(Q->\infty)=n_{0} K_{T} k_{B} T \quad$ Isothemal compressibility

Dynamic structure factor: Looking at diffusive processes

$$
\mathrm{S}(\mathrm{Q}, \mathrm{w})\langle\mathrm{FT}\rangle \mathrm{G}(\mathrm{r}, \mathrm{t})
$$

Large values of $r, t \longleftarrow$ Liquid state small values of Q, w

Long time behaviour
\Rightarrow Diffusion $\longrightarrow \xrightarrow{\text { Small values of } r, t} \begin{aligned} & \text { large values of } Q, w\end{aligned}$ $\mathrm{G}_{\mathrm{s}}(r, t)$ peaked at $\mathrm{t}=0$ for small r \square Short time behaviour \square Ideal gas
$t \geq 10^{-12} s$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Diffusive behaviour (low Q):

Fick's law: $\frac{\partial n(\boldsymbol{r}, t)}{\partial t}=D \nabla^{2} n(\boldsymbol{r}, t)$ Diffusion constant D
Incoherent scattering: $\quad S_{\mathrm{inc}}(Q, \omega)=\frac{1}{2 \pi \hbar} \int I_{s}(Q, t) e^{-\tau \omega t} \mathrm{~d} t=\frac{1}{\pi \hbar} \frac{D Q^{2}}{\omega^{2}+\left(D Q^{2}\right)^{2}}$

Valid only for $\mathrm{q}^{-1>}$ mean distance

\Rightarrow Otherwise: microscopic details!

Lorentzian function centered at $\mathrm{w}=0$
$\Gamma^{f w h m}=2 \hbar D Q^{2}$

Width increases with Q

Diffusive behaviour (higher Q):

Macroscopic model fails for $\mathrm{q}^{-1} \sim$ mean distance
jumping (fluctuation) time t_{1}
Miccroscopic model: Jump diffusion

$$
t_{0} \gg t_{1}
$$

equilibrium pos. r_{0} relaxation time t_{0}

$$
S_{\mathrm{inc}}(\boldsymbol{Q}, \omega)=\frac{1}{2 \pi \hbar} \int I_{s}(\boldsymbol{Q}, t) e^{-\imath \omega t} \mathrm{~d} t
$$

$$
=\frac{1}{2 \pi \hbar} \int e^{-f(\boldsymbol{Q}) t} \cos \omega t=\frac{1}{\pi \hbar} \frac{f(\boldsymbol{Q})}{\omega^{2}+f^{2}(\boldsymbol{Q})}
$$

Again:Lorentzian function centered at $\mathrm{w}=0$

$$
\Gamma^{\mathrm{fwhm}}=2 \hbar f(\boldsymbol{Q})
$$

$$
f(Q)=\frac{1}{\tau_{0}}\left(1-\frac{1}{\left(1+\left(Q l_{0}\right)^{2}\right)^{2}}\right)
$$

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

