

Physics with Neutrons II, SS 2016

Lecture 1, 11.4.2016

MLZ is a cooperation between:

Organization

Lecture: Monday 12:00 - 13:30, PH227

Sebastian Mühlbauer (MLZ/FRM II)

Sebastian.muehlbauer@frm2.tum.de

Tel:089/289 10784

Tuturials: Friday 12:00 – 13:30, 2224 (E21)

(first tutorial 24.4.2016)

Lukas Karge

Lukas.karge@frm2.tum.de

Tel:089/289 11774

http://wiki.mlz-garching.de/n-lecture02:index

Organization

Suggested:

Seminar *Methoden und Experimente in der Neutronenstreuung* (PH-E21-1), Wednesday 9:00-10:30, PH2224, (Start 20.4.2016) P. Böni, S. Mühlbauer, C. Hugenschmidt

Lecture *Grundlagen zur Instrumentierung mit Neutronen* Thursday, 8:30-9:00, PH2224, (Start 21.4.2016) P.Böni

Seminar *Neutrons in Science and Industry* (PH-21-4), Monday 14:30-15:45, HS3, (Start 11.4.2016) Organization: P.Böni, W.Petry, T. Schöder, T. Schrader

Plan for SS 2016

- VL1: Repetition of winter term, basic neutron scattering theory
- VL2: SANS, GISANS and soft matter
- VL3: Neutron optics, reflectometry and dynamical scattering theory
- VL4: Diffuse neutron scattering
- VL5: Cross sections for magnetic neutron scattering
- VL6: Magnetic elastic scattering (diffraction)
- VL7: Magnetic structures and structure analysis
- VL8: Polarized neutrons and 3d-polarimetry
- VL9: Inelastic scattering on magnetism
- VL10: Magnetic excitations Magnons, spinons
- VL11: Phase transitions and critical phenomena as seen by neutrons
- VL12: Spin echo spectrocopy

Essence of a neutron scattering experiment

Basic neutron scattering theory

Fermis Golden Rule

Fermis Golden Rule for scattering process: Born approximation

Fig. 2.1 Coordinates of nucleus and neutron.

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\lambda\to\lambda'} = \frac{1}{\Phi}\frac{1}{\Omega}\sum_{k'\ in\ \mathrm{d}\Omega}W_{k,\lambda\to k',\lambda'}$$

$$\sum_{k' \text{ in d}\Omega} W_{k,\lambda \to k',\lambda'} = \frac{2\pi}{\hbar} \varrho_k \left| \langle k' \lambda' | V | k \lambda \rangle \right|^2$$

$$\langle k'\lambda' | V | k\lambda \rangle = \int \Psi_{k'}^* \chi_{\lambda'}^* V \Psi_k^* \chi_{\lambda}^* dr dR$$

Challenge: Rewrite this mixed expression in terms of sample properties

Box Integration

1st step: Box Normalization to calculate ρ_{ν}

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\lambda\to\lambda'} = \frac{k'}{k} \left(\frac{m}{2\pi\hbar}\right)^2 \left|\langle k'\lambda' | V | k\lambda\rangle\right|^2$$

Energy Conservation, Integration

2nd step: Energy conservation

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{\lambda\to\lambda'} = \frac{k'}{k} \left(\frac{m}{2\pi\hbar}\right)^{2} \left|\langle k'\lambda'|V|k\lambda\rangle\right|^{2} \underline{\delta(E_{\lambda} - E_{\lambda'} + E - E')}$$
$$\int \delta(E_{\lambda} - E_{\lambda'} + E - E') = 1$$

3rd step: Integration with respect to neutron coordinate r

$$\langle k'\lambda' | V | k\lambda \rangle = \sum_{j} V_{j}(\kappa) \langle \lambda' | e^{i\kappa R_{j}} | \lambda \rangle \qquad V_{j}(\kappa) = \int V_{j}(x_{j}) e^{i\kappa x_{j}} dx_{j}$$

$$\kappa = k - k'$$

Interaction = Fourier transform of the potential function

Fermi Pseudopotential

4th step: Ansatz: Delta function potential for single nucleus

$$V(r) = a\delta(r)$$

Fermi pseudopotential:
$$V(r)=\frac{2\pi\hbar^2}{m}b\delta(r)$$

Fermi pseudopotential does NOT represent physical reality

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{\lambda\to\lambda'} = \frac{k'}{k} \left|\sum_{j} b_{j} \left\langle k'\lambda' \left| e^{i\kappa R_{j}} \right| k\lambda \right\rangle \right|^{2} \delta(E_{\lambda} - E_{\lambda'} + E - E')$$

Integral Representation of Delta Function

5th step: Integral representation of the delta function for energy.

Idea: Stick all the time dependence into the matrix element

$$\delta(E_{\lambda} - E_{\lambda'} + E - E') = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} e^{i(E_{\lambda} - E_{\lambda'})t/\hbar} e^{-i\omega t} dt$$

H is the Hamiltonian of the scattering system with Eigenfunctions λ and Eigenvalues E_{λ}

$$H|\lambda\rangle = E_{\lambda}|\lambda\rangle$$

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{\lambda\to\lambda'} = \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} b_{j}b_{j'} \int_{-\infty}^{\infty} \left\langle \lambda \left| e^{-i\kappa R_{j'}} \right| \lambda' \right\rangle \left\langle \lambda' \left| e^{iHt/\hbar} e^{i\kappa R_{j}} e^{-iHt/\hbar} \right| \lambda \right\rangle e^{-i\omega t} \mathrm{d}t$$

No terms of λ and λ' outside the matrix element anymore!

Sum Over Final States

6th step: Sum over final states, average over initial states

We use:
$$\sum_{\lambda'} \langle \lambda | A | \lambda' \rangle \langle \lambda' | B | \lambda \rangle = \langle \lambda | A B | \lambda \rangle$$

$$p_{\lambda} = \frac{1}{Z} e^{\frac{-E_{\lambda}}{k_b T}}$$

$$\langle A \rangle = \sum_{\lambda} \langle \lambda | A | \lambda \rangle$$

Stick the time evolution into the operator for the $R_i(t) = e^{iHt/\hbar}R_ie^{-iHt/\hbar}$ position R,

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} b_j b_{j'} \int_{-\infty}^{\infty} \left\langle e^{-i\kappa R_{j'}(0)} e^{-i\kappa R_{j}(t)} \right\rangle e^{-i\omega t} \mathrm{d}t$$

Correlation function

Coherent/Incoherent Scattering

Assume a large sample with statistically variations of b_i

No correlations among *b*: $\overline{b_{j'}b_j} = (\overline{b})^2, j' \neq j$

$$\overline{b_{j'}b_j} = (\overline{b^2}), j' = j$$

Double differential crosssection spilts up into two terms:

$$\left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'}\right)_{coherent} = \frac{\sigma_{coh.}}{4\pi} \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \left\langle e^{-i\kappa R_{j'}(0)} e^{-i\kappa R_{j}(t)} \right\rangle e^{-i\omega t} \mathrm{d}t$$

$$\left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'}\right)_{incoherent} = \frac{\sigma_{inc.}}{4\pi} \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \left\langle e^{-i\kappa R_j(0)} e^{-i\kappa R_j(t)} \right\rangle e^{-i\omega t} \mathrm{d}t$$

$$\sigma_{coh.} = 4\pi \overline{b}^2$$
 $\sigma_{inc.} = 4\pi (\overline{b^2} - \overline{b}^2)$

Coherent/Incoherent Scattering

Coherent

Spatial and temporal correlations between different atoms

- Interference effects:
- Given by average of b
 Bragg scattering

Incoherent

Spatial and temporal correlations between the same atom

- \square Constant in Q
- Given by variations in b due to spin, disorder, random atomic motion....

Neutron diffraction on crystals

Elastic Scattering, Diffraction on Crystals

Starting point: Coherent elastic cross-section

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} b_j b_{j'} \int_{-\infty}^{\infty} \left\langle e^{-i\kappa R_{j'}(0)} e^{-i\kappa R_{j}(t)} \right\rangle e^{-i\omega t} \mathrm{d}t$$

Sample: Single X-tal in thermal equilibrium, consider static correlations!

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \int_{\infty}^{\infty} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'} \mathrm{d}(\hbar\omega) = \sum_{j,j'} b_j b_{j'} \left\langle e^{-i\kappa R_{j'}} e^{-i\kappa R_j} \right\rangle$$

Drop the operator formalism for R_j as we look at static correlations

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{coh.el}} = \langle b \rangle^2 \sum_{j,j'} e^{-i\kappa(R_{j'}-R_{j})}$$
 Information on the position of the atoms

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{inc.}} = (\langle b^2 \rangle - \langle b \rangle^2) \sum_{j=j'} e^{-i\kappa(R_j - R_j)} = N(\langle b^2 \rangle - \langle b \rangle^2)$$

$$\Longrightarrow \text{Isotropic, constant elastic background}$$

Elastic Scattering, Diffraction on Crystals: Lattice Sums

What we used:

Fig. 2.1 Coordinates of nucleus and neutron.

Our sample is a periodic crystal!

Crystal= Basis+lattice

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{coh.el}} = \langle b \rangle^2 N_0 \sum_{T} e^{i\vec{\kappa}\vec{T}} \quad \text{with} \quad \vec{R_{j'}} - \vec{R_{j}} = \vec{T}$$

Lattice sum:
$$\sum_{\vec{l}} e^{i\vec{\kappa}\vec{l}} = \frac{(2\pi)^3}{v_0} \sum_{\vec{\tau}} \delta(\vec{\kappa} - \vec{\tau})$$

Real space lattice

Reciprocal space lattice

Lattice Sums & Reciprocal Lattice

Lattice sum:
$$\sum_{\vec{l}} e^{i\vec{\kappa}\vec{l}} = \frac{(2\pi)^3}{v_0} \sum_{\vec{\tau}} \delta(\vec{\kappa} - \vec{\tau})$$

Real space lattice

Reciprocal space lattice

Braggs law:
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{coh.el}} = N_0 \frac{(2\pi)^3}{v_0} \langle b \rangle^2 \sum_{\vec{\tau}} \delta(\vec{\kappa} - \vec{\tau})$$

- Scattering occurs when κ meets a vector of the reciprocal lattice τ
- Reciprocal lattice vectors au are perpendicular to a corresponding lattice plane indexed by the Miller index (h,k,l) and 2π

 $d_{(h,k,l)} = \frac{2\pi}{|\vec{\tau}_{h,k,l}|}$

Structure Factor

More than one atom in the unit cell:

$$\vec{R} = \vec{l_j} + \vec{d_\alpha}$$

 l_j Position of the j-th unit cell

 $\vec{d_{\alpha}}$ Position of the a-th atom in the unit cell

$$\frac{d\sigma}{d\Omega_{coh.el}} = N_0 \frac{(2\pi)^3}{v_0} \left| \sum_{\vec{d}} b_d e^{i\vec{\kappa}\vec{d}} \right|^2 \sum_{\vec{\tau}} \delta(\vec{\kappa} - \vec{\tau})$$

$$S_{\vec{\tau}} = \sum_{\vec{J}} b_d e^{i\vec{\kappa}\vec{d}}$$

 $S_{\vec{\tau}} = \sum_{\vec{l}} b_d e^{i\vec{k}\vec{d}}$ Structure factor (sum over one unit cell)

Master Formula for Neutron Diffraction

Going from operator to standard vector notation of R_j:

Neglected thermal vibration of atoms around their equilibrium position!

$$2W(\vec{\kappa}) = \frac{1}{3}\kappa^2 \langle u^2 \rangle$$

Debye-Waller factor describes mean dispalcement <u2>

Master formula for elastic coherent scattering on crystals

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{coh.el}} = N_0 \frac{(2\pi)^3}{v_0} e^{-2W(\vec{\kappa})} \sum_{\vec{\tau}} |S_{\vec{\tau}}|^2 \delta(\vec{\kappa} - \vec{\tau})$$

Normalization Debye-Waller Structure factor Bragg positions

Clean data

Diffraction techniques

Large background

Monochromatic vs. TOF vs. Laue

in time and detector

Waste less neutrons

Inelastic neutron scattering: Coherent excitations - Phonons

Basic idea: Phonons in a linear chain

Properties of Phonons

"Live" in the first Brillouin zone

Collective excitation of atoms

Description as dilute, non-interacting phonon gas" Quasiparticles (3N phonons for N atoms) Follow quasi-continuous dispersion relation Obey Bose-Einstein statistics (specific heat!) 3P phonon branches (3p-3 optical, 2 transverse acoustic,

1 longitudinal acoustic for P-atomic basis)

QM picture (raising and lowering operator)

Inelastic scattering: Phonon dispersion

Reminder: Phonon DOS, specific specific heat, Debye approximation

Van Hove singularities are kinks or discontinuities in the density of states due to flat portions of the dispersion curves.

Inelastic coherent scattering

Inelastic scattering: Cross-section for phonon emission/absportion

Time dependent position operator $\hat{m{R}}_j(t) = m{l}_j + \hat{m{u}}_j(t)$

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} b_j b_{j'} e^{i\mathbf{Q}\cdot(\mathbf{l}_j - \mathbf{l}_{j'})} \int_{-\infty}^{\infty} \langle e^{-i\mathbf{Q}\cdot\hat{\mathbf{u}}_{j'}(0)} e^{i\mathbf{Q}\cdot\hat{\mathbf{u}}_{j}(t)} \rangle e^{-i\omega t} \mathrm{d}t.$$

Displacement expressed in terms of normal mode (QM harmonic oscillator)

$$\hat{\boldsymbol{u}}_{j}(t) = \sqrt{\frac{\hbar}{2MN}} \sum_{s,\boldsymbol{q}} \frac{e_{s}(\boldsymbol{q})}{\sqrt{\omega_{s}(\boldsymbol{q})}} \left(\hat{a}_{s}(\boldsymbol{q}) e^{i[\boldsymbol{q} \cdot \boldsymbol{l}_{j} - \omega_{s}(\boldsymbol{q})t]} + \hat{a}_{s}^{+}(\boldsymbol{q}) e^{-i[\boldsymbol{q} \cdot \boldsymbol{l}_{j} - \omega_{s}(\boldsymbol{q})t]} \right)$$

Ladder operators of QM oscillator Bose-Einstein statistics of phonons

$$\hat{a}_{s}^{+}(\mathbf{q})|\lambda_{n}\rangle = \sqrt{n+1}|\lambda_{n+1}\rangle,$$

$$\hat{a}_{s}(\mathbf{q})|\lambda_{n}\rangle = \sqrt{n}|\lambda_{n-1}\rangle,$$

$$\langle \lambda_{n}|\hat{a}_{s}(\mathbf{q})\hat{a}_{s}^{+}(\mathbf{q})|\lambda_{n}\rangle = n_{s}(\mathbf{q}) + 1$$

$$\langle \lambda_{n}|\hat{a}_{s}^{+}(\mathbf{q})\hat{a}_{s}(\mathbf{q})|\lambda_{n}\rangle = n_{s}(\mathbf{q}),$$

$$n_s(q) = \left(\exp\left(\frac{\hbar\omega_s(q)}{k_BT}\right) - 1\right)^{-1}$$

Inelastic coherent scattering

Inelastic scattering: Cross-section for phonon emission/absportion

Abbreviaton of the exponents

$$\hat{A} = -i\mathbf{Q} \cdot \hat{\mathbf{u}}_{j'}(0) = -i\sum_{s,q} \left(\alpha_s(q)\hat{a}_s(q) + \alpha_s^*(q)\hat{a}_s^+(q)\right) \qquad \alpha_s(q) = \sqrt{\frac{\hbar}{2MN}} \sum_{s,q} \frac{\mathbf{Q} \cdot \mathbf{e}_s(q)}{\sqrt{\omega_s(q)}} e^{i\mathbf{q} \cdot \mathbf{l}_{j'}},$$

$$\hat{B} = i\mathbf{Q} \cdot \hat{\mathbf{u}}_j(t) = i\sum_{s,q} \left(\beta_s(q)\hat{a}_s(q) + \beta_s^*(q)\hat{a}_s^+(q)\right), \qquad \beta_s(q) = \sqrt{\frac{\hbar}{2MN}} \sum_{s,q} \frac{\mathbf{Q} \cdot \mathbf{e}_s(q)}{\sqrt{\omega_s(q)}} e^{i[\mathbf{q} \cdot \mathbf{l}_j - \omega_s(q)t]}$$

Taylor expansion of the time evolution

$$e^{\langle \hat{A}\hat{B}\rangle} = 1 + \langle \hat{A}\hat{B}\rangle + \frac{1}{2}\langle \hat{A}\hat{B}\rangle^2 + \dots + \frac{1}{n!}\langle \hat{A}\hat{B}\rangle^n + \dots$$

Elastic scattering (+ Debye Single phonon processes Waller factor)

Write linear term in term of sample properties (QM harmonic oscillator!)

$$\langle \lambda_n | \hat{A} \hat{B} | \lambda_n \rangle = \langle \lambda_n | \sum_{s, \mathbf{q}} [\alpha_s(\mathbf{q}) \beta_s^*(\mathbf{q}) \hat{a}_s(\mathbf{q}) \hat{a}_s^+(\mathbf{q}) + \alpha_s^*(\mathbf{q}) \beta_s(\mathbf{q}) \hat{a}_s^+(\mathbf{q}) \hat{a}_s(\mathbf{q})] | \lambda_n \rangle$$

Inelastic scattering: Debye Waller factor: Aluminium/Lithium

Inelastic coherent scattering

Master formula for coherent inelastic scattering

Consider only coherent scattering (j≠j')

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = \frac{1}{4\pi M} \cdot \frac{k'}{k} \langle b \rangle^2 e^{-2W(Q)} \sum_{s,q} \frac{(Q \cdot e_s(q))^2}{\omega_s(q)}
\times \left[(n_s(q) + 1) \sum_l e^{i(Q-q) \cdot l} \int_{-\infty}^{\infty} \mathrm{d}t e^{i(\omega_s(q) - \omega)t} \right]
+ n_s(q) \sum_l e^{i(Q+q) \cdot l} \int_{-\infty}^{\infty} \mathrm{d}t e^{-i(\omega_s(q) + \omega)t} \right].$$

Convert integrals to delta functions using lattice sums (as for diffraction)

$$\begin{split} \frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega} &= \frac{4\pi^3}{v_0M} \cdot \frac{k'}{k} \langle b \rangle^2 e^{-2W(Q)} \sum_{s,q} \frac{(Q \cdot e_s(q))^2}{\omega_s(q)} \\ & \times \left[(n_s(q)+1)\delta\left(\omega - \omega_s(q)\right) \sum_{\tau} \delta(Q-q-\tau) \right] & \text{Phonon emission} \\ & + n_s(q)\delta\left(\omega + \omega_s(q)\right) \sum_{\tau} \delta(Q+q-\tau) \right]. & \text{Phonon absorption} \end{split}$$

Inelastic coherent scattering

Scattering "triangle" for inelastic scattering

Inelastic scattering: TAS

Triple axis spectrometer: Workinghorse for phonons and magnons

"Working horse" for phonons/magnons in magnetism/superconductivity Clean data at a fixed point in momentum/energy space Slow, wasting a lot of neutrons

Cold TAS (PANDA)

Best energy resolution: 20µeV Energy transfer <20meV Momentum transfer <6Å-1

Be En

Thermal TAS (PUMA)
Best energy resolution: 600µeV
Energy transfer <100meV
Momentum transfer <12Å-1

Inelastic scattering: TAS

Triple axis spectrometer: Scattering "triangle" S(q,w)

Incoherent inelastic: Phonon DOS

Inelastic Incoherent scattering

Inelastic incoherent scattering: Phonon DOS

Now consider incoherent scattering (j=j')

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{k'}{k} \frac{1}{2\pi\hbar} e^{-2W(\mathbf{Q})} \sum_j b_j^2 \int_{-\infty}^{\infty} e^{\langle \hat{A}\hat{B}\rangle} e^{-\imath \omega t} \mathrm{d}t.$$

Similar to the coherent part, only consider the linear term in the Taylor expansion

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = \frac{1}{2M} \frac{k'}{k} \left(\langle b^2 \rangle - \langle b \rangle^2 \right) e^{-2W(\mathbf{Q})} \sum_{s,\mathbf{q}} \frac{(\mathbf{Q} \cdot \mathbf{e}_s(\mathbf{q}))^2}{\omega_s(\mathbf{q})} \times \left[(n_s(\mathbf{q}) + 1)\delta \left(\omega - \omega_s(\mathbf{q}) \right) + n_s(\mathbf{q})\delta \left(\omega + \omega_s(\mathbf{q}) \right) \right]$$

Phonon emission

Phonon absorption

Inelastic Incoherent scattering

Inelastic incoherent scattering: Phonon DOS

Compare to coherent part:

Energy conservation is fulfilled No momentum conservation is fulfilled

 \implies All phonons with energy ω_{s} contribute!

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{1}{4M} \frac{k'}{k} \left(\langle b^{2} \rangle - \langle b \rangle^{2} \right) e^{-W(\mathbf{Q})}
\times \left\langle \left(\mathbf{Q} \cdot e_{s}(\mathbf{q}) \right)^{2} \right\rangle \cdot \frac{g(\omega)}{\omega} \cdot \left[\coth \frac{\hbar\omega}{2k_{B}T} \pm 1 \right]$$

With phonon DOS $g(\omega)$

$$\int_0^\infty g(\omega) \mathrm{d}\omega = 3N$$

Inelastic Incoherent scattering

Inelastic incoherent scattering: Phonon DOS

For a (cubic) Bravais lattice only

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = \frac{1}{12M} \frac{k'}{k} \left(\langle b^2 \rangle - \langle b \rangle^2 \right) e^{-W(\mathbf{Q})} Q^2$$
$$\times \frac{g(\omega)}{\omega} \cdot \left[\coth \frac{\hbar \omega}{2k_B T} \pm 1 \right].$$

Inelastic incoherent scattering directly measures phonon DOS $g(\omega)$

Correlation functions of neutron scattering

Correlation functions

Starting point: General cross-section

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} b_j b_{j'} \int_{-\infty}^{\infty} \langle e^{-iQ\hat{R}_j (0)} e^{-Q\hat{R}_{j'}(t)} \rangle e^{-i\omega t} \mathrm{d}t$$
$$I(\mathbf{Q}, t) = \frac{1}{N} \int_{-\infty}^{\infty} \langle e^{-iQ\hat{R}_j (0)} e^{-Q\hat{R}_{j'}(t)} \rangle$$

Fourier transform (space)
$$G(\mathbf{r},t) = \frac{1}{(2\pi)^3} \int I(\mathbf{Q},t)e^{-i\mathbf{Q}\mathbf{r}}dQ$$

Fourier transform (time)
$$S(\mathbf{Q}, \omega) = \frac{1}{(2\pi\hbar)} \int I(\mathbf{Q}, t) e^{-i\omega t} dt$$

Correlation functions

Physical meaning of pair correlation function G(r,t)

Correlation between atom j' at time t=0 at position r' and atom j at time t=t and position r'+r

Splits up in

$$G_s(\mathbf{r},t) = \frac{1}{N} \sum_{i} \int \langle \delta(\mathbf{r}' - \hat{\mathbf{R}}_j(0)) \delta(\mathbf{r}' + \mathbf{r} - \hat{\mathbf{R}}_j(t)) \rangle d\mathbf{r}'$$
 Self correlation function

$$G_d(\mathbf{r},t) = \frac{1}{N} \sum_{i \neq i'} \int \langle \delta(\mathbf{r}' - \hat{\mathbf{R}}_{j'}(0)) \delta(\mathbf{r}' + \mathbf{r} - \hat{\mathbf{R}}_{j}(t)) \rangle d\mathbf{r}'$$
 Correlation function

$$\left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega}\right)_{coh} = N \frac{k'}{k} \langle b \rangle^2 S_{coh}(\boldsymbol{Q}, \omega) \qquad \qquad \left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega}\right)_{inc} = N \frac{k'}{k} (\langle b^2 \rangle - \langle b \rangle^2) S_{inc}(\boldsymbol{Q}, \omega)$$

Neutron scattering on liquids and amorphous materials

Pair correlation function G(r,t) useful for description of liquids

Liquid (amorphhous) sample

Crystalline sample

Similar density, no LRO, only short range correlations

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Reminder: Scattering on liquids

Static structure factor

Start with I(Q,t) and split into into two parts:

$$I(\mathbf{Q},t) = \hbar \int S(\mathbf{Q},\omega) e^{\omega t} d\omega$$

$$I(\mathbf{Q},t) = I(\mathbf{Q},\infty) + I'(\mathbf{Q},t)$$

$$S(\mathbf{Q}, \omega) = \frac{1}{\hbar} \delta(\omega) I(\mathbf{Q}, \infty) + \frac{1}{2\pi\hbar} \int I'(\mathbf{Q}, t) e^{-i\omega t} dt$$

Elastic part

Inelastic part

Infinite time correlations

Static structure factor: Looking at deviations of the mean density n(r)

$$G'(\mathbf{r}) = \frac{1}{N} \int \langle n(\mathbf{r}' - \mathbf{r}) - \langle n(\mathbf{r}' - \mathbf{r}) \rangle) (n(\mathbf{r}') - \langle n(\mathbf{r}') \rangle) \rangle d\mathbf{r}'$$

Elastic scattering from liquids

$$\frac{d\sigma}{d\Omega} = N\langle b \rangle^2 (1 + \int (g(\mathbf{r}) - n_0) e^{i\mathbf{Q}\mathbf{r}} d\mathbf{r}$$

g(r): pair correlation function

$$S(Q) = 1 + 4\pi \int_0^\infty (g(r) - n_0) \frac{\sin Qr}{Qr} r^2 dr$$

Static structure factor: Looking at deviations of the mean density n(r)

Static structure factor: Scattering function

g(r) pair correlation function: Deviations from mean density n(r).

Limit Q->0 S(Q=0)=1

Limit Q-> ∞ S(Q-> ∞)= $n_0 \kappa_{\tau} k_{\rm B} T$ Isothemal compressibility

Scattering on liquids

Physics with Neutrons II, SS 2016, Lecture 1, 14.4.2016

Scattering on liquids

Diffusive behaviour (low Q):

Fick's law:
$$\frac{\partial n(\boldsymbol{r},t)}{\partial t} = D\nabla^2 n(\boldsymbol{r},t)$$
 Diffusion constant D

Incoherent scattering:
$$S_{\rm inc}(Q,\omega) = \frac{1}{2\pi\hbar} \int I_s(Q,t) e^{-\imath \omega t} dt = \frac{1}{\pi\hbar} \frac{DQ^2}{\omega^2 + (DQ^2)^2}$$

Valid only for q-1» mean distance

Otherwise: microscopic details!

Lorentzian function centered at w=0

$$\Gamma^{\text{fwhm}} = 2\hbar DQ^2$$

Width increases with Q

QENS 📛 Diffusion constant

Scattering on liquids

Diffusive behaviour (higher Q):

Macroscopic model fails for q⁻¹~ mean distance

jumping (fluctuation) time t₁

Miccroscopic model: Jump diffusion

$$t_0 \gg t_1$$

jumping vector l_o

equilibrium pos. r_o relaxation time t_o

$$S_{\text{inc}}(Q,\omega) = \frac{1}{2\pi\hbar} \int I_s(Q,t) e^{-i\omega t} dt$$
$$= \frac{1}{2\pi\hbar} \int e^{-f(Q)t} \cos \omega t = \frac{1}{\pi\hbar} \frac{f(Q)}{\omega^2 + f^2(Q)}$$

Again:Lorentzian function centered at w=0

$$\Gamma^{\text{fwhm}} = 2\hbar f(Q)$$

$$f(Q) = \frac{1}{\tau_0} \left(1 - \frac{1}{(1 + (Ql_0)^2)^2} \right)$$