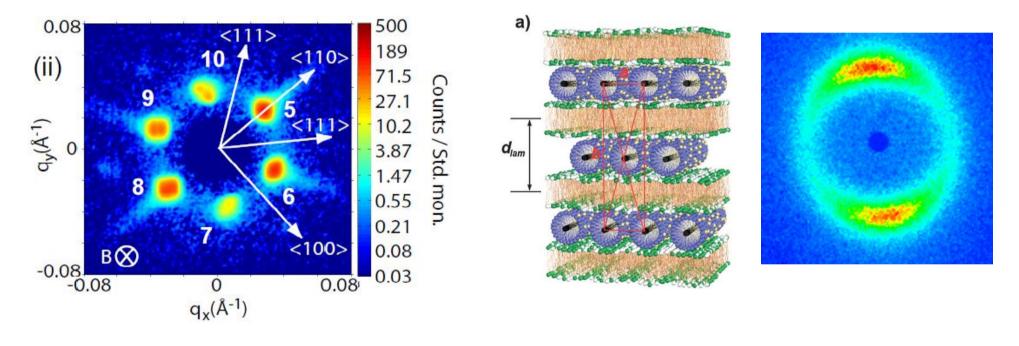


Physics with Neutrons II, SS 2016



Lecture 6, 6.6.2016

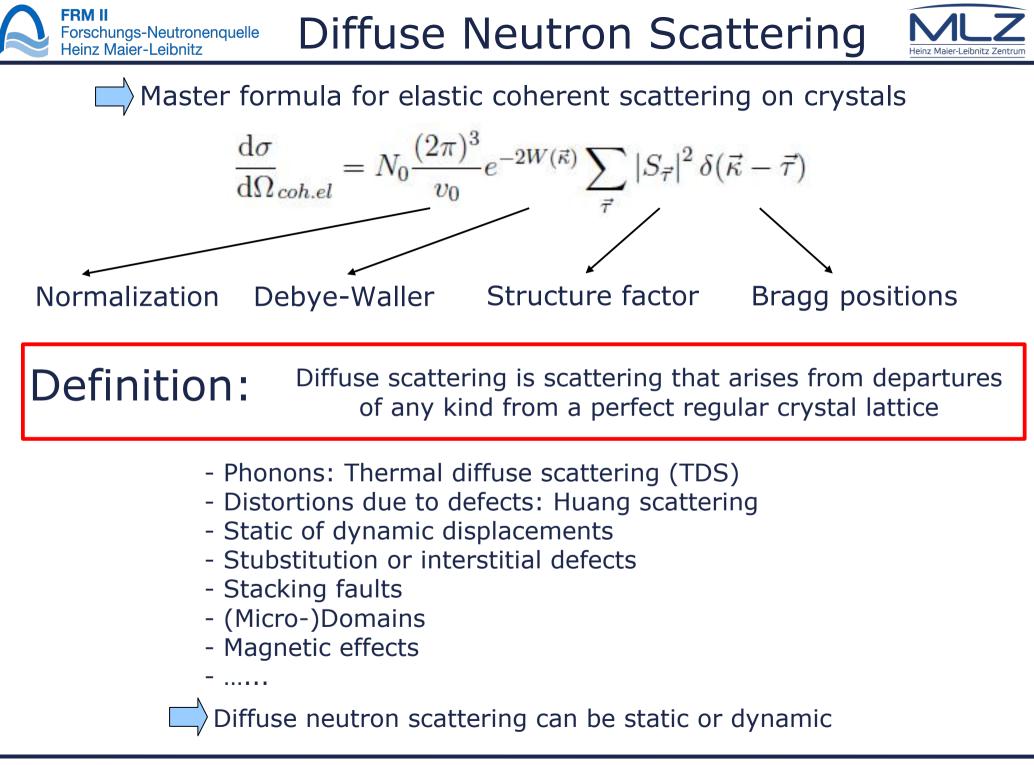
MLZ is a cooperation between:

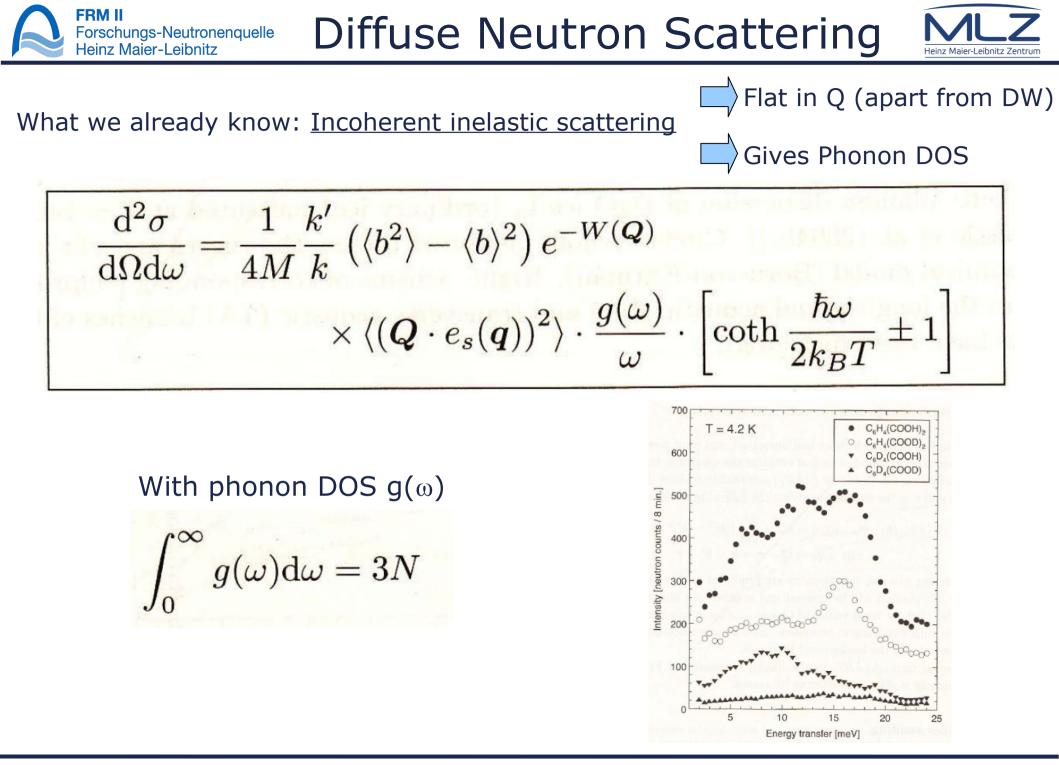
Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

- VL1: Repetition of winter term, basic neutron scattering theory
- VL2: SANS, theory and applications
- VL3: Neutron optics
- VL4: Reflectometry and dynamical scattering theory
- VL5: Diffuse neutron scattering
- \rightarrow VL6: Magnetic scattering cross section
 - VL7: Magnetic structures and structure analysis
 - VL8: Polarized neutrons and 3d-polarimetry
 - VL9: Inelastic scattering on magnetism
 - VL10: 4.7.2016 (8:30!!) Phase transitions and critical phenomena as seen by neutrons
 - VL11: Spin echo spectrocopy

Exam: Please register until 30.6.2016

Reminder: Diffuse Neutron Scattering: Looking between the Bragg spots





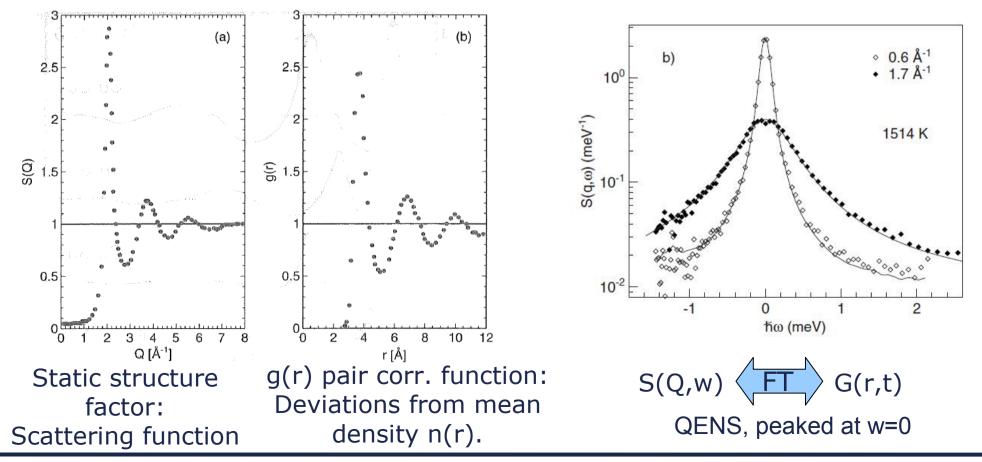
What we already know: Scattering on liquids and amorphous materials

 \Rightarrow Measure of pair correlation function g(r)

Diffuse Neutron Scattering

Quasielastic scattering: Diffusion

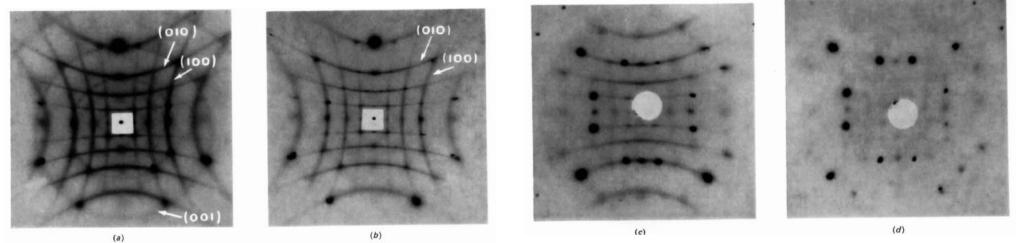
Static structure factor: Deviations of the mean density n(r) Dynamic structure factor: Diffusive processes



Diffuse Neutron Scattering

Example 1: Ferroelectric Perovskite KNbO₃

Here: Diffuse X-ray scattering (1970s)



Two alternative models for diffuse sheets:

Formation of linear chains of correlated vibrational displacements due to a specific soft mode? Thermal diffuse scattering?



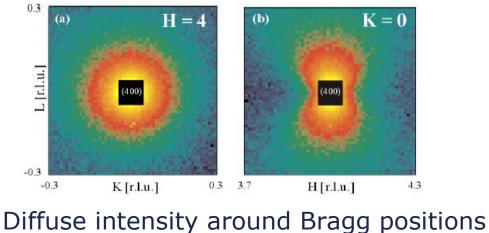
??

Formation of linear chains of correlated vibrational displacements due to a specific soft mode? Thermal diffuse scattering?

Soft mode similar for PbTiO₃, BaTiO₃ and KnbO₃

Expect similar results

Thermal diffuse scattering PbTiO₃

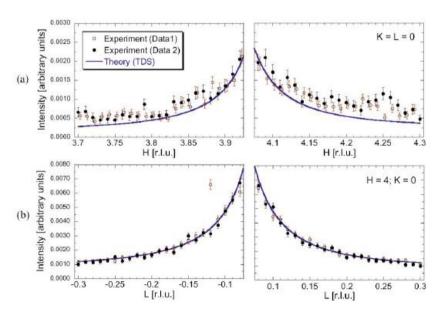


Formation of linear chains of correlated local displacements?

Different local symmetry

No diffuse sheets for PbTiO₃

Expect different result



Diffuse Neutron Scattering

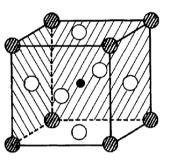
Ferroelectric Perovskite KNbO₃

Forschungs-Neutronenquelle

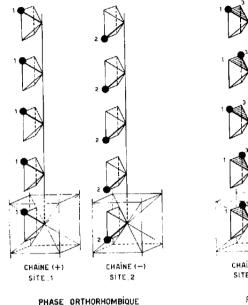
Heinz Maier-Leibnitz

FRM II

Formation of linear chains of correlated local displacements



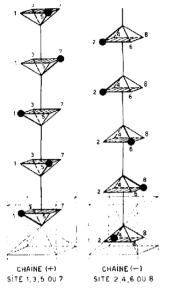
• Ti ou Nb Oxygéne Da ou K Fig. 5. La structure pérovskite idéale.



IL N'EXISTE QUE DES CHAINES PARALLÈLES A [010]

CHAINE (+) SITE 1 OU 3 CHAINE 2 OU 4

PHASE TÉTRAGONALE IL EXISTE DES CHAINES PARALLÈLES A [010] ET DES CHAINES PARALLÈLES A [100]



PHASE CUBIQUE IL EXISTE DES CHAINES RESPECTIVEMENT PARALLÈLES AUX TROIS AXES (100) [010] [001]

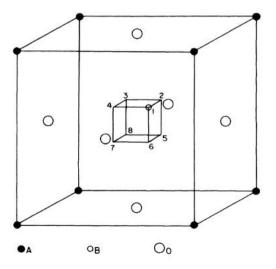
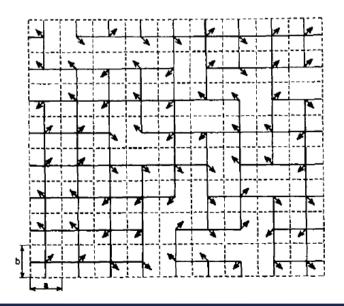


Fig. 10. Le croisement des chaines de corrélation en projection sur un plan (001) dans la phase tétragonale. Les flèches schématisent le déplacement de l'atome central projeté sur le plan (001); les mailles appartenant à une même chaine sont reliées en trait plein. En phase tétragonale la composante du déplacement perpendiculairement au plan de figure est constante; en phase cubique au contraire il existerait un système de chaines analogue suivant [001].



Diffuse Neutron Scattering

Example 2: Simple binary alloy on a bcc lattice

Crystallogaphic sice can be occuied by

- two specific atoms
- half occupacy

Forschungs-Neutronenquelle

Heinz Maier-Leibnitz

- random occupany

Simple rule:

FRM II

- Similar atoms with scattering length b
- No imaginary part
- No variation of b
- <u>Exactly one atom per unit call occupied</u>, <u>however, randomly distributed</u>

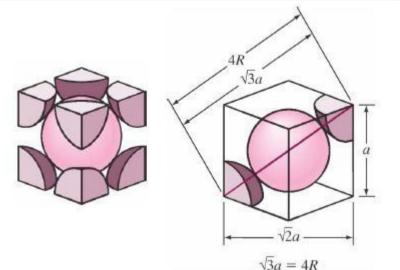
"Random" distribution, flat in Q?

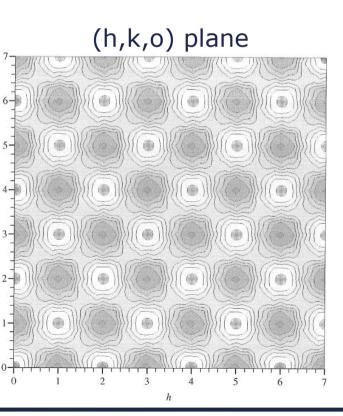
Diffuse scattering

$$D^{2} = \left| \sum_{u} s_{u} ib \sin(\mathbf{Q} \cdot \mathbf{d}) \exp(i\mathbf{Q} \cdot \mathbf{R}_{u}) \right|^{2}$$

+ Bragg scattering

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm coh} = b^2 \sum_{j,j'} \exp(i\mathbf{Q} \cdot (\mathbf{R}_j - \mathbf{R}_{j'}))$$





Powerful tool for modeling diffuse scattering

Monte Carlo simulations (MC)

1) Choose appropriate descriptions of potentials

2) Generate arrangement of N atoms including boundary conditions

- 3) Calculate system energy
- 4) Randomly move atom(s)
- 5) Recalculate energy

6) Refine energy of the system with Monte Carlo method

Working from the potential to the structure

Reverse Monte Carlo simulations (RMC)

1) Generate arrangement of N atoms including boundary conditions and hard core potential to avoid overlap

- 2) Calculate F(Q) from arrangements
- 3) Randomly move atom(s)
- 4) Recalculate scattering signal F(Q)

5) Refine F(Q) of the system with Monte Carlo method

Working from the scattering signal to the structure

Diffuse neutron scattering: Lets try a classification:

Diffuse background (flat in Q)

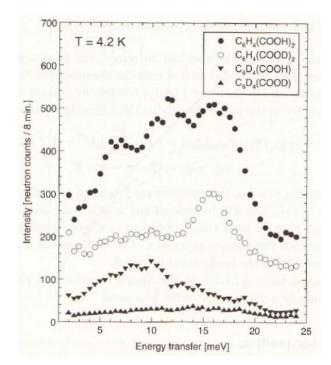
Incoherent elastic scattering, radom disorder (isotope, spin, voids....) $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{inc.}} = (\langle b^2 \rangle - \langle b \rangle^2) \sum_{j=j'} e^{-i\kappa(R_{j'}-R_j)} = N(\langle b^2 \rangle - \langle b \rangle^2)$

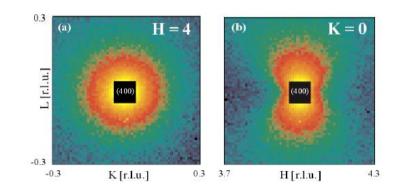
Incoherent inelastic scattering, phonon DOS (Debye Waller, not really flat)

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = \frac{1}{4M} \frac{k'}{k} \left(\langle b^2 \rangle - \langle b \rangle^2 \right) e^{-W(\mathbf{Q})} \\ \times \left\langle \left(\mathbf{Q} \cdot e_s(\mathbf{q}) \right)^2 \right\rangle \cdot \frac{g(\omega)}{\omega} \cdot \left[\coth \frac{\hbar \omega}{2k_B T} \pm 1 \right]$$

Odd Bragg peak shape (Butterflies, ellipoids..)

Typically thermal diffuse scattering, Einstein model for optical phonons, measurement of lattice elasticity





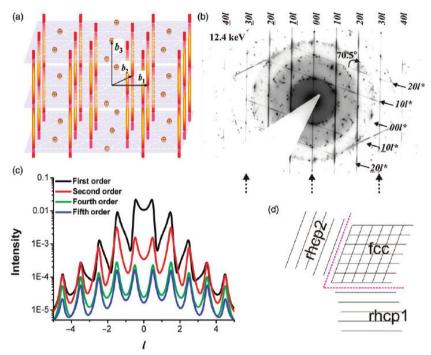
Diffuse Neutron Scattering

Diffuse neutron scattering: Lets try a classification:

Bragg rods and planes

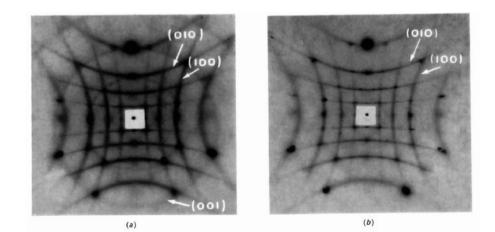
Other than 3D order

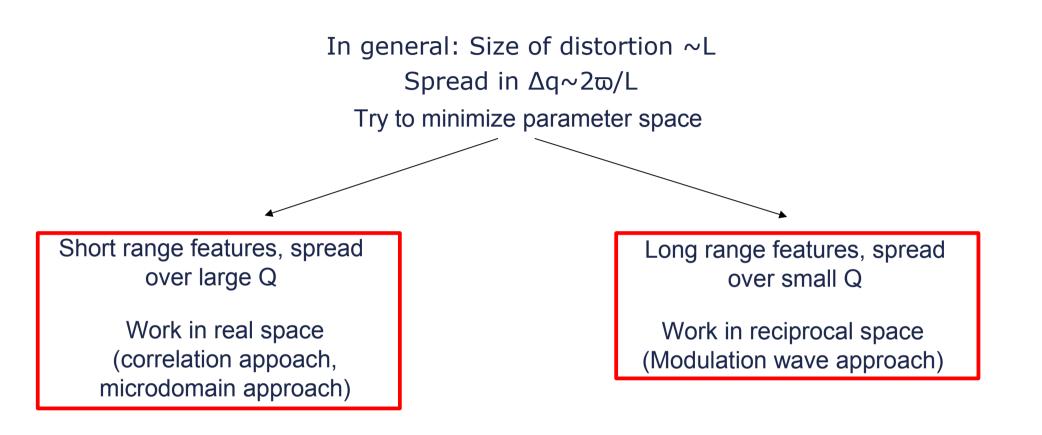
Line order (1D) Bragg planes Planar correlations (2D oder) Bragg rods



Diffuse but with structure in Q

Partial order /suborder of systems See examples 1 and 2, Liquid and amorphous samples

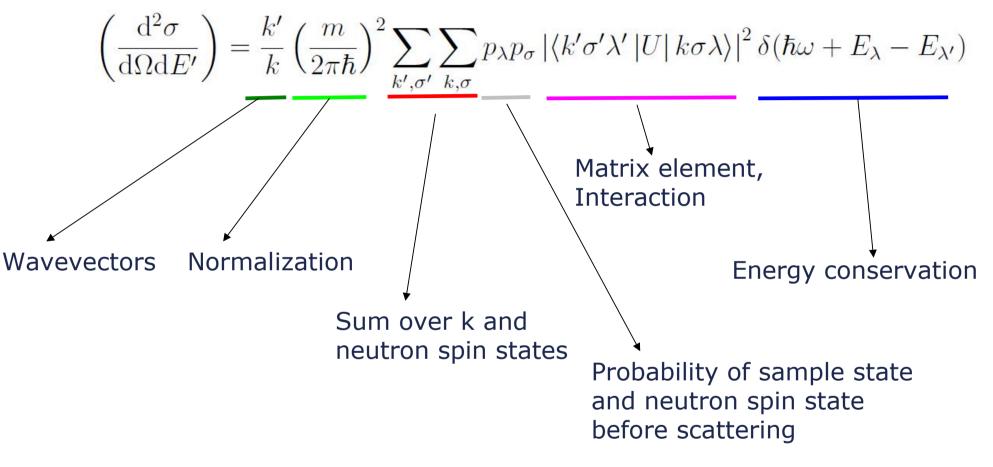




Magnetic neutron scattering: Basic cross section

Starting point (similar to Winter term, now including the spin state of the neutron)

Magnetic neutron scattering



Until now: Only nuclear scattering Interaction: Fermi pseudopotential

FRM II

Forschungs-Neutronenquelle

Heinz Maier-Leibnitz

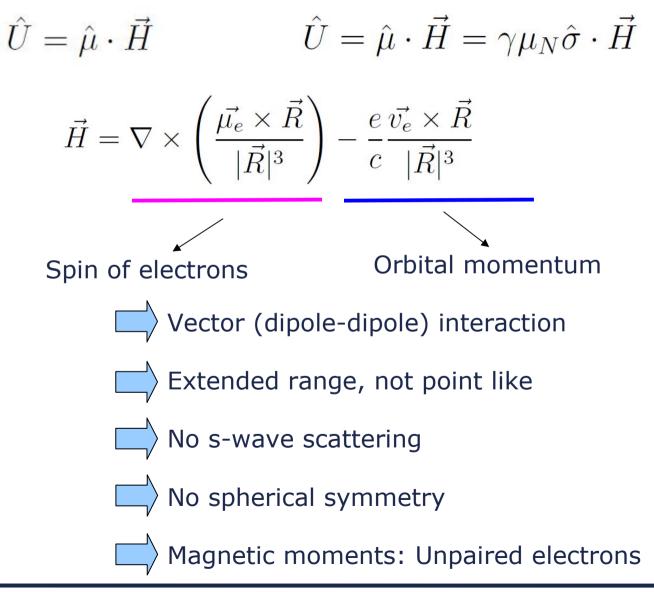
$$V(r) = \frac{2\pi\hbar^2}{m}b\delta(r)$$

FRM II Magnetic neutron scattering Forschungs-Neutronenquelle Heinz Maier-Leibnitz Nuclear neutron scattering $V(r) = \frac{2\pi\hbar^2}{m}b\delta(r)$ Interaction: Fermi pseudopotential Scalar funtion Point like (delta function) For an incoming plane wave: s-wave scattering Spherical symmetry

 \Rightarrow FT of delta function is constant

Magnetic neutron scattering:

Interaction: Magnetic moment of neutron interacts with local magnetic field



Leaving away the maths

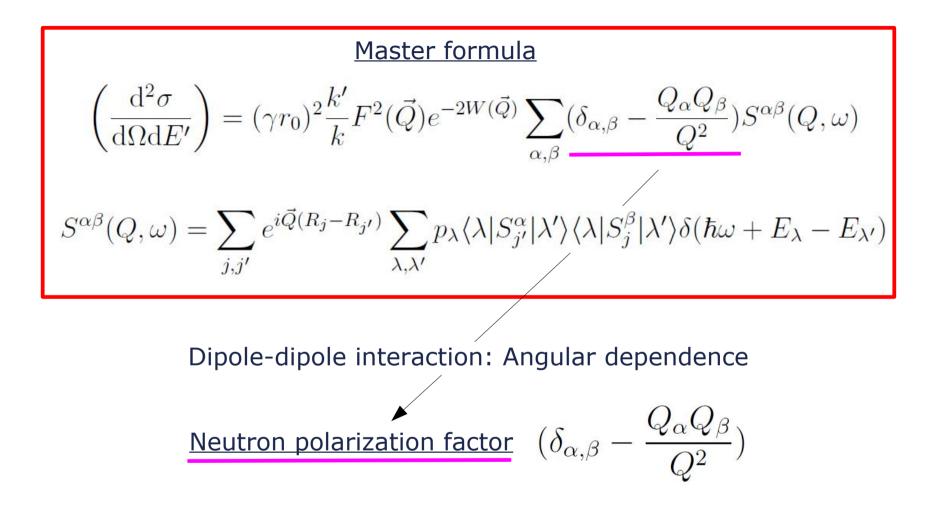
 \Rightarrow For spin only scattering (neglect orbital momentum)

 \rightarrow For unpolarized neutrons (average over polarization states)

For identical magnetic ions with localized moments

Master formula

$$\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right) = (\gamma r_0)^2 \frac{k'}{k} F^2(\vec{Q}) e^{-2W(\vec{Q})} \sum_{\alpha,\beta} (\delta_{\alpha,\beta} - \frac{Q_\alpha Q_\beta}{Q^2}) S^{\alpha\beta}(Q,\omega)$$
$$S^{\alpha\beta}(Q,\omega) = \sum_{j,j'} e^{i\vec{Q}(R_j - R_{j'})} \sum_{\lambda,\lambda'} p_\lambda \langle\lambda|S_{j'}^{\alpha}|\lambda'\rangle \langle\lambda|S_j^{\beta}|\lambda'\rangle \delta(\hbar\omega + E_\lambda - E_{\lambda'})$$



Only moments perpendicular to Q contribute to magnetic scattering Don't confuse with polarized neutrons!

Master formula

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right) = (\gamma r_{0})^{2} \frac{k'}{k} F^{2}(\vec{Q}) e^{-2W(\vec{Q})} \sum_{\alpha,\beta} (\delta_{\alpha,\beta} - \frac{Q_{\alpha}Q_{\beta}}{Q^{2}}) S^{\alpha\beta}(Q,\omega)$$

$$S^{\alpha\beta}(Q,\omega) = \sum_{j,j'} e^{i\vec{Q}(R_{j}-R_{j'})} \sum_{\lambda,\lambda'} p_{\lambda} \langle \lambda | S_{j'}^{\alpha} | \lambda' \rangle \langle \lambda | S_{j}^{\beta} | \lambda' \rangle \delta(\hbar\omega + E_{\lambda} - E_{\lambda'})$$
Dipole-dipole interaction: Magnetic form factor
$$\mathbf{Fe^{\mathbf{r}}: 3d^{5} \delta S}$$
Fourier transform of electron cloud
Useful to discriminate
magnetic/nuclear scattering
Check the tables for each ion!
$$\mathbf{Fe^{\mathbf{r}}: 3d^{5} \delta S}$$

For the case of orbital momentum + spin

$$\mu = -\mu_b (L+2S)$$
$$\hat{S}^{\alpha}_j = \frac{1}{2}g\hat{J}^{\alpha}_j$$

Effective angular momentum operator

Landé splitting factor $g = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$

Approximation for small Q, spin+orbital momentum

Magnetic scattering function

$$S^{\alpha\beta}(Q,\omega) = \sum_{j,j'} e^{i\vec{Q}(R_j - R_{j'})} \langle S^{\alpha}_{j'}(0) \ S^{\beta}_{j'}(t) \rangle e^{-i\omega t} dt$$
Spin correlation function:
Correlation of magnetic moment at site j, time t=0
and site j', time t=t
Fourier transform measured with neutrons!

Why neutrons are so unique:

Fluctuation dissipation theorem

$$S^{\alpha\beta}(Q,\omega) = \frac{N\hbar}{\pi} (1 - e^{-\frac{\hbar\omega}{k_bT}})^{-1} \mathrm{Im}\chi^{\alpha\beta}(\vec{Q},\omega)$$

Neutrons directly measure generalized susceptibility tensor

$$M^{\alpha}(\vec{Q},\omega) = \chi^{\alpha\beta}(\vec{Q},\omega)H^{\beta}(\vec{Q},\omega)$$