

Physics with Neutrons II, SS 2016

Lecture 9, 27.6.2016

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

- VL1: Repetition of winter term, basic neutron scattering theory
- VL2: SANS, theory and applications
- VL3: Neutron optics
- VL4: Reflectometry and dynamical scattering theory
- VL5: Diffuse neutron scattering
- VL6: Magnetic scattering cross section
- VL7: Magnetic structures and structure analysis
- VL8: Polarized neutrons
- VL9: 3D polarimetry, spin waves
- VL10: 4.7.2016 (8:30!!) Spin waves (continued), Phase transitions and critical phenomena as seen by neutrons
- VL11: Spin echo spectrocopy (C. Franz)

Exam: Please register until 30.6.2016

Polarized Neutrons continued

Magnetic moment of the neutron expressed in terms of the Pauli spin operator $\hat{\sigma}$

Spin states $|+\rangle |-\rangle$ with eigenvalues +1, -1 for the operator $\hat{\sigma_z}$

Choose z axis as the polarization and quantization axis

FRM II

Forschungs-Neutronenquelle

Heinz Maier-Leibnitz

Definition of polarization: Fraction f of a neutron beam in the $|+\rangle$ state

$$|P| = 2f - 1$$
 $|P| = \frac{n_- - n_-}{n_+ + n_-}$ $f = \frac{n_+}{n_+ + n_-}$

Cross section splits up into four terms:

$$\begin{array}{c|c} |+\rangle & \overrightarrow{} & |+\rangle \\ |-\rangle & \overrightarrow{} & |-\rangle \end{array} & \begin{array}{c} |+\rangle & \overrightarrow{} & |-\rangle \\ |-\rangle & \overrightarrow{} & |-\rangle \end{array} & \begin{array}{c} \text{Spin flip} \\ |-\rangle & \overrightarrow{} & |+\rangle \end{array} & \begin{array}{c} \text{spin flip} \\ \text{channels} \end{array}$$

Magnetic moment $\boldsymbol{\mu}$ of the neutron in a magnetic field B

Precession around the field axis with Larmor frequency $f_{Larmor} = \frac{\gamma}{2\pi}B$

Lamor frequency f= 2.92kHz *B[G] $\Delta \Phi$ =2.654° * λ [Å] * B[G] * I[cm]

Lamor precession

How to transport polarized neutrons: Guide field (few mT) Adiabatic rotation $\int_{1}^{z} \int_{1}^{\vec{B}_{i}} dt$

How to manipulate the polarization direction: Non adiabatic rotation, new quatization axis

<u>Mezei flipper</u> π-flip, static field Shield stray field Wavelength dependent $\frac{\text{RF flipper}}{\text{Static field} + \text{RF field}}$ π -flip in rotating reference frame
Independent of wavelngth

Modify the interaction operator taking the polarization into account

Spin states and momentum of neutron are orthogonal

 $\langle \hat{k'} \hat{\sigma'} \hat{\lambda'} | \hat{U} | \hat{k} \hat{\sigma} \hat{\lambda} \rangle = \langle \hat{k'} \hat{\lambda'} | \hat{U} | \hat{k} \hat{\lambda} \rangle \langle \hat{\sigma'} | \hat{U} | \hat{\sigma} \rangle$

Result for the four channels $\langle +|\hat{U}|+\rangle = b + AI_z + BM_z$ $\langle -|\hat{U}|-\rangle = b - AI_z - BM_z$ $\langle +|\hat{U}|-\rangle = A(I_x + iI_y) + B(M_x + iM_y)$ $\langle -|\hat{U}|+\rangle = A(I_x - iI_y) + B(M_x - iM_y)$

Polarization effects

 $\begin{array}{c} \text{Result for the four channels} \\ \langle +|\hat{U}|+\rangle = b + AI_z + BM_z \\ \langle -|\hat{U}|-\rangle = b - AI_z - BM_z \end{array} \end{array} \xrightarrow[]{} \text{Non spin flip} \\ \langle +|\hat{U}|-\rangle = A(I_x + iI_y) + B(M_x + iM_y) \\ \langle -|\hat{U}|+\rangle = A(I_x - iI_y) + B(M_x - iM_y) \end{array} \xrightarrow[]{} \text{Spin flip} \end{array}$

How to polarize?

Polarizing monochromators

Materials:

- Fe, Co alloys
- Cu₂MnAl (111)

Heusler alloy- 95% polarization

- Need to maintain single ferro domain in entire monochromator
- Low reflectivity

Pol. effects: Summary

	Non spin flip	Spin flip	Polarization dependent
Nuclear coherent	1	0	no
Nuclear incoherent spin (single isotope)	1/3	2/3	no
Nuclear incoherent isotope (I=0)	1	0	no
Paramagnetic scattering	1/2(1-Q ²)	1/2(1-Q ²)	no
FM, collinear, P perp. to Q, M Q	1 nuclear coh. + magnetic (b+p vs. b-p)	0 nuclear incoh.	yes
FM, non-collinear, P perp. to Q	<1 nuclear coh. + magnetic	>0 nuclear incoh. + magnetic	yes
FM, collinear, P Q, M perp. to Q	Useless configuration, external field problem, No magnetic signal nuclear coh.	0 nuclear incoh.	no
AF, collinear, P Q M perp. to Q	Only nuclear for P perp. to M	<1	yes
AF, non-collinar	<1	>0	yes

Typical Setup

Polarization option for a TAS:

Heusler mono Mezei flipper Uniaxial setup Heusler analyzer (3D polarimetry as add on)

(or SANS):

Polarizing cavity (mirror)

RF flipper

³He analyzer

(3D polarimetry as add on)

Heusler 111 polarizing Monochromator

Neutron polarization: Things to consider

Uni-axial polarization analysis

- Reflectivity of polarizing monochromators is weak (have to be kept single domain). The polarized intensity typically amounts 20-30% of the unpolarized beam.
- Guide field necessary, difficulties with magnetic field at the sample region
- All flippers / polarizers /analyzers have finite efficiency! Corrections needed, difficult for small signals due to leakage from one channel to the other. ³He analyzers are timedependent.
 - Four channels instead of one need to be measured!
 - Only the projection of the polarization on the quantization axis (z-axis, guide field) can be measured

Uniaxial polarization analysis Forschungs-Neutronenquelle

Adiabatic rotation of polarization allows to measure three components (x,y,z)

Heinz Maier-Leibnitz

FRM II

Assume that scattering process at the sample rotates the polarization

Full treatment: Blume Maleyev equations:

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \int dt \left\{ \\ \langle N_{\boldsymbol{Q}} N_{\boldsymbol{Q}}^{\dagger} \rangle + \\ + (\gamma r_{0})^{2} \langle \boldsymbol{M}_{\perp \boldsymbol{Q}} \boldsymbol{M}_{\perp \boldsymbol{Q}}^{\dagger} \rangle + \\ + (\gamma r_{0}) \boldsymbol{P}_{0} \left[\langle N_{\boldsymbol{Q}}^{\dagger} \boldsymbol{M}_{\perp \boldsymbol{Q}} \rangle + \langle \boldsymbol{M}_{\perp \boldsymbol{Q}}^{\dagger} N_{\boldsymbol{Q}} \rangle \right] - \\ -i(\gamma r_{0}) \boldsymbol{P}_{0} \langle \boldsymbol{M}_{\perp \boldsymbol{Q}} \times \boldsymbol{M}_{\perp \boldsymbol{Q}}^{\dagger} \rangle \\ \left\} \exp(-i\omega t),$$

pure nuclear contribution pure magnetic contribution nuclear-magnetic interference chiral magnetic contribution

 $M_{\perp Q}$ is the magnetic interaction vector (component perp. to Q)

Notation:

 $x \parallel Q$

U

z

- Q in the scattering plane

Blume Maleyev equations for the final polarization:

FRM II

Forschungs-Neutronenquelle

Heinz Maier-Leibnitz

$$\begin{aligned} \mathbf{P}' \frac{d^2 \sigma}{d\Omega dE'} &= \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \int dt \Big\{ \mathbf{P}_{\mathbf{0}} \langle N_{\mathbf{Q}} N_{\mathbf{Q}}^{\dagger}(t) \rangle - (\gamma r_0)^2 \mathbf{P}_{\mathbf{0}} \langle \mathbf{M}_{\perp \mathbf{Q}} \mathbf{M}_{\perp \mathbf{Q}}^{\dagger}(t) \rangle + \\ &+ (\gamma r_0)^2 \langle (\mathbf{P}_{\mathbf{0}} \mathbf{M}_{\perp \mathbf{Q}}^{\dagger}(t)) \mathbf{M}_{\perp \mathbf{Q}} \rangle + (\gamma r_0)^2 \langle \mathbf{M}_{\perp \mathbf{Q}}^{\dagger}(t) (\mathbf{P}_{\mathbf{0}} \mathbf{M}_{\perp \mathbf{Q}}) \rangle + \\ &+ (\gamma r_0) \left(\langle N_{\mathbf{Q}}^{\dagger} \mathbf{M}_{\perp \mathbf{Q}}(t) \rangle + \langle \mathbf{M}_{\perp \mathbf{Q}}^{\dagger} N_{\mathbf{Q}}(t) \rangle \right) + \\ &+ i (\gamma r_0) \mathbf{P}_{\mathbf{0}} \times \left(\langle \mathbf{M}_{\perp \mathbf{Q}}^{\dagger} N_{\mathbf{Q}}(t) \rangle - \langle N_{\mathbf{Q}}^{\dagger} \mathbf{M}_{\perp \mathbf{Q}}(t) \rangle \right) + \\ &+ i (\gamma r_0)^2 \langle \mathbf{M}_{\perp \mathbf{Q}} \times \mathbf{M}_{\perp \mathbf{Q}}^{\dagger}(t) \rangle \Big\} \exp(-i\omega t). \end{aligned}$$

Polarization is a vector that may turn at the scattering process!

Item	correlation functions	description
N	$rac{k_f}{k_i} \langle N_{oldsymbol{Q}} N_{oldsymbol{Q}}^{\dagger} angle_{\omega}$	nuclear contribution
$M^{y/z}$	$(\gamma r_0)^2 \frac{k_f}{k_i} \langle M_{\perp \boldsymbol{Q}}^{y/z} M_{\perp \boldsymbol{Q}}^{\dagger y/z} \rangle_{\omega}$	y- and z -components of the magnetic con-
		tribution.
$R^{y/z}$	$(\gamma r_0) \frac{k_f}{k_i} \langle N_{\boldsymbol{Q}}^{\dagger} M_{\perp \boldsymbol{Q}}^{y/z} \rangle_{\omega} + \langle M_{\perp \boldsymbol{Q}}^{\dagger y/z} N_{\boldsymbol{Q}} \rangle_{\omega}$	real parts of the nuclear-magnetic interfer-
		ence term.
$I^{y/z}$	$(\gamma r_0) \frac{k_f}{k_i} \langle N_{\boldsymbol{Q}}^{\dagger} M_{\perp \boldsymbol{Q}}^{y/z} \rangle_{\omega} - \langle M_{\perp \boldsymbol{Q}}^{\dagger y/z} N_{\boldsymbol{Q}} \rangle_{\omega}$	imaginary parts of the nuclear-magnetic
		interference term.
C	$i(\gamma r_0)^2 \frac{k_f}{k_i} (\langle M^y_{\perp Q} M^{\dagger z}_{\perp Q} \rangle_{\omega} - \langle M^z_{\perp Q} M^{\dagger y}_{\perp Q} \rangle_{\omega})$	chiral contribution
M_{mix}	$(\gamma r_0)^2 \frac{k_f}{k_i} (\langle M^y_{\perp Q} M^{\dagger z}_{\perp Q} \rangle_{\omega} + \langle M^z_{\perp Q} M^{\dagger y}_{\perp Q} \rangle_{\omega})$	mixed magnetic contribution or magnetic-
		magnetic interference term

FRM II Forschungs-Neutronenquelle 3D polarimetry: Example

$\boldsymbol{Q}_{+} = (0, 0, 1+k)$						
S^k	$\frac{a\hat{e}_x}{2}$	$rac{(a\hat{e}_x-ia\hat{e}_y)}{2}$	$rac{(a\hat{e}_x-ib\hat{e}_y)}{2}$	$\frac{(a\hat{e}_x - ia\hat{e}_z)}{2}$		
$M_{\perp Q}$	$(\bar{0}, \frac{a}{2}, 0)$	$(0, \frac{a}{2}, -\frac{ia}{2})$	$\left(0,\frac{a}{2},-\frac{ib}{2}\right)$	$(0, \frac{a}{2}, 0)$		
M^y	$(\gamma r_0)^2 \frac{a^2}{4}$	$(\gamma r_0)^2 \frac{a^2}{4}$	$(\gamma r_0)^2 \frac{a^2}{4}$	$(\gamma r_0)^2 \frac{a^2}{4}$		
M^{z}	0	$(\gamma r_0)^2 \frac{a^2}{4}$	$(\gamma r_0)^2 \frac{b^2}{4}$	0		
M^{mix}	0	0	0	0		
C	0	$-(\gamma r_0)^2 \frac{a^2}{2}$	$-(\gamma r_0)^2 \frac{ab}{2}$	0		
$\frac{d\sigma}{d\Omega}$	$(\gamma r_0)^2 \frac{a^2}{4}$	$(\gamma r_0)^2 \frac{a^2}{2} (1 + P_0^x)$	$(\gamma r_0)^2 (\frac{a^2+b^2}{4}+P_0^x \frac{ab}{2})$	$(\gamma r_0)^2 \frac{a^2}{4}$		
P _{ij}	$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{array}\right)$	pol. tensor pro- vided in table 2.3	$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$		

3D polarimetry: Setup Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Mu-pad of Cryopad:

FRM II

coupling-coil in

Field direction

polarization

coupling-coil out

Mu-metal or Meissner shield:

- Zero field chamber to maintain spin direction
- Spin precession devices:

δ_i-coil

Field free area

δ_f-coil

Turn the spin adiabatically to the desired direction and back to the analyzer axis.

φ_i-coil

φ_f-coil

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Uni-axial polarization analysis vs. 3D polarimetry

Uni-axial polarization analysis

$$\check{P} = \left(\begin{array}{cc} \check{P}_{xx} & & \\ & \check{P}_{yy} & \\ & & \check{P}_{zz} \end{array} \right)$$

Measurement of the diagonal terms only

Slow, but helps solving <u>most</u> typical magnetic structures

Magnetic field at the sample is possible

Complicated due to leakage caused by finite efficiencies of flipper and analyzer

3D polarimetry

$$\mathbf{P}_{ij} = (P_{i0}\tilde{P}_{ji} + P_j'')/|\boldsymbol{P_0}|$$

Measurement of the 9 elements of the polarization matrix

Even slower, but helps solving <u>almost all</u> magnetic structures

Complicated for FM samples

Complicated due to leakage caused by finite efficiencies of flipper and analyzer

No magnetic field at the sample allowed

This is the last measurement to be done!

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Measurement strategy for magnetic diffraction

³He polarizer: SEOP

Collisional

S. Kadlecek S. Am Sci 2002;90:540-549.

sense

coil

FRM II

925

bag

Forschungs-Neutronenguelle

Heinz Maier-Leibnitz

Circularly polarized light polarizes alkali metal electrons

Quenching gas (N2) supresses reradiation

Transfer of spin polarization to ³He via binary collisions

Guide field necessary, sensitive to stray fields

Time dependent decay of ³He (days)

No alternation of beam path

Spin waves: Magnetic excitations seen by neutrons

Spin waves

Spin waves (physical picture)

Collective excitation of the order parameter

Involves oscillation of spin components transverse to the ordered moment

Spin waves

Spin waves: seen by neutrons

Similar to Phonons: Use QM picture with raising and lowering operator

Bose-Einstein occupany
$$\langle n_{\boldsymbol{q}} \rangle = \left(\exp \left(\frac{\hbar \omega(\boldsymbol{q})}{k_B T} \right) - 1 \right)^{-1}$$

Inelastic cross-sectrion for spin wave scattering

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} = (\gamma r_0)^2 \frac{(2\pi)^3 S}{2v_0} \frac{k'}{k} F^2(\mathbf{Q}) e^{-2W(\mathbf{Q})} \left[1 + \left(\frac{Q_z}{Q}\right)^2 \right] \\ \times \sum_{\tau, \mathbf{q}} \left[\langle n_{\mathbf{q}} + 1 \rangle \delta(\mathbf{Q} - \mathbf{q} - \tau) \delta(\hbar \omega(\mathbf{q}) - \hbar \omega) \right. \\ \left. + \langle n_{\mathbf{q}} \rangle \delta(\mathbf{Q} + \mathbf{q} - \tau) \delta(\hbar \omega(\mathbf{q}) + \hbar \omega) \right]$$