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Exercise 6.1

On the homepage you �nd two scattering data sets from a 2D monoatomic cubic Bravais lattice (arti�-
cially created with a 2D Fast-Fourier transform). The atoms have a certain probability to be displaced,
i.e. the data is di�use neutron scattering. In the following we want to use the Reverse Monte Carlo
(RMC) method to �nd out if there is a random displacement of atomic positions or a certain tendency
or is completely uncorrelated in the two data sets. Therefore, we follow the steps of the RMC algorithm
(we neglect units for the algorithm):

� Import the data with the software of your choice and plot it on a logarithmic scale.

� Create a 100×100 grid with 169 atoms in a cubic lattice with a distance of 8 and scattering length
b = 1.

� Calculate Fcalc(Q) from the arrangement with a 2D Fast Fourier transform and χ2
old =

∑10000
j=1 (Fcalc(Qj)−

Fdata(Qj))
2, where the sum is over all experimental data points.

� Apply the RMC algorithm:

1. Move one randomly selected atom in a random direction by a random, but short (1 − 3
positions in the grid) distance.

2. Recalculate Fcalc(Q) and χ2
new =

∑10000
j=1 (Fcalc(Qj)− Fdata(Qj))

2.

3. Compare χ2
new and χ2

old and decide if the �t has improved. If so, accept the step and start
again with the new arrangement. If not, accept the step anyway with a probability of the
order of exp(−(χ2

new − χ2
old))/2) or otherwise reject the step.

4. Repeat these steps until the �t is satisfactory.
Hint: A lot of steps might be necessary and it is not easy to reach convergence.
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Figure 1: (l) Data set 1, (m) Data set 2, (r) Starting grid for the �tting.
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Exercise 6.2

The microscopic di�usion of H2O has been determined under high pressures. In order to avoid freezing
of the liquid the sample has been heated to T = 400K (see phase diagram of water 2). Figure 3 shows
FWHM (meV ) plotted as function of Q2(Å−1

) values for P = 0.6GPa and P = 2.9GPa.

1. Determine the di�usion constant D at P = 0.6GPa and P = 2.9GPa.

2. The di�usion constants at ambient pressure are D = 1.2 · 10−9m2/s and D = 2.3 · 10−9m2/s at
T = 237K and T = 298K, respectively. The following equations relate the di�usion constant with
the viscosity.

D =
kbT

6πηrse
, Stokes-Einstein, (1)

D =D0 exp

(−EA
kBT

)
, Arrhenius law, (2)

η ∼ exp(gνTm/T ), (3)

(see e.g. Poirier, �Introduction to the Physics of the Earth's Interior�, Cambridge University Press
(2000)), where D is the di�usion constant, η is the viscosity, rse is the particle's free radius, EA is
the activation energy, Tm is the melting temperature and gν is a constant. The density of water
at P = 2.9GPa and T = 400K is ρ = 1.38g/cm3.

3. What can you conclude? Is the Stokes-Einstein relation valid?
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Figure 2: Phase diagram of water. Note the logarithmic scale for the x-axis.
Figure 2: Phase diagram of water. Note the logarithmic scale for the x-axis.
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Figure 1: Measured linewidth (FWHM) in meV versus square of the scattering vector
in Å°2.

viscosity, rse is the particle’s free radius, EA is the activation energy, Tm is the

melting temperature and g∫ is a constant. The density of water at P = 2.9 GPa

and T = 400 K is Ω = 1.38 g/cm3.

• What can you conclude? Is the Stokes-Einstein relation valid?

Figure 3: Measured linewidth (FWHM) in meV versus square of the scattering vector in Å−2.
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