
Physics with neutrons 2

Sebastian Mühlbauer, sebastian.muehlbauer@frm2.tum.de

Sommer semester 2016

Exercise sheet 7

Due 2016�June�03

Lukas Karge, lukas.karge@frm2.tum.de, Tel.: 089-289-11774
Tobias Weber, tweber@frm2.tum.de

Exercise 7.1

On the homepage you �nd two scattering data sets from a 2D monoatomic cubic Bravais lattice (arti�-
cially created with a 2D Fast-Fourier transform). The atoms have a certain probability to be displaced,
i.e. the data is di�use neutron scattering. In the following we want to use the Reverse Monte Carlo
(RMC) method to �nd out if there is a random displacement of atomic positions or a certain tendency
or is completely uncorrelated in the two data sets. Therefore, we follow the steps of the RMC algorithm
(we neglect units for the algorithm):

� Import the data with the software of your choice and plot it on a logarithmic scale.

� Create a 100×100 grid with 169 atoms in a cubic lattice with a distance of 8 and scattering length
b = 1.

� Calculate Fcalc(Q) from the arrangement with a 2D Fast Fourier transform and χ2
old =

∑10000
j=1 (Fcalc(Qj)−

Fdata(Qj))
2, where the sum is over all experimental data points.

� Apply the RMC algorithm:

1. Move one randomly selected atom in a random direction by a random, but short (1 − 3
positions in the grid) distance.

2. Recalculate Fcalc(Q) and χ2
new =

∑10000
j=1 (Fcalc(Qj)− Fdata(Qj))2.

3. Compare χ2
new and χ2

old and decide if the �t has improved. If so, accept the step and start
again with the new arrangement. If not, accept the step anyway with a probability of the
order of exp(−(χ2

new − χ2
old))/2) or otherwise reject the step.

4. Repeat these steps until the �t is satisfactory.
Hint: A lot of steps might be necessary and it is not easy to reach convergence.
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Data set 2
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Starting grid

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: (l) Data set 1, (m) Data set 2, (r) Starting grid for the �tting.

1



Solution. A Matlab code was discussed in the Exercise.

Exercise 7.2

The microscopic di�usion of H2O has been determined under high pressures. In order to avoid freezing
of the liquid the sample has been heated to T = 400K (see phase diagram of water 2). Figure 3 shows
FWHM (meV ) plotted as function of Q2(Å−1) values for P = 0.6GPa and P = 2.9GPa.

1. Determine the di�usion constant D at P = 0.6GPa and P = 2.9GPa.

2. The di�usion constants at ambient pressure are D = 1.2 · 10−9m2/s and D = 2.3 · 10−9m2/s at
T = 273K and T = 298K, respectively. The following equations relate the di�usion constant with
the viscosity.

D =
kbT

6πηrse
, Stokes-Einstein, (1)

D =D0 exp

(−EA
kBT

)
, Arrhenius law, (2)

η ∼ exp(gνTm/T ), (3)

(see e.g. Poirier, �Introduction to the Physics of the Earth's Interior�, Cambridge University Press
(2000)), where D is the di�usion constant, η is the viscosity, rse is the particle's free radius, EA is
the activation energy, Tm is the melting temperature and gν is a constant. The density of water
at P = 2.6GPa and T = 400K is ρ = 1.38g/cm3.
What can you conclude? Is the Stokes-Einstein relation valid?

Solution. 1. We have quasielastic scattering

Sinc(Q,ω) =
1

π~
DQ2

ω2 + (DQ2)2
,

e.g. it is a Lorentzian. Hence, we have

Γfwhm = 2~DQ2 ⇒ D =
Γfwhm

2~Q2

and the FWHM of the energy as a function of Q2 is linear. From Figure 3 we can extract the
slope

0.95 0.45

and calculate

⇒ D1(0.6GPa, 400k) =
dQ2

2~ · dΓfwhm
=

0.95meV

2~ · 1 · 10−20m−2
= 7 · 10−9

m2

s
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⇒ D2(2.6GPa, 400k) =
1meV

2~ · 0.45 · 10−20m−2
= 3.5 · 10−9

m2

s

2. From Eq. (3) with Tm the melting temperature and constant gν follows

� η is constant along the melting line,

� for P1 = 2.6GPA at 400K we have D2 = 3.5 · 10−9m
2

s

� for ambient pressure the di�usion constants are given
273K : D0 = 1.2 · 10−9

m2

s

298K : D′0 = 2.3 · 10−9
m2

s

It follows that the points of D0 and D2 sit on (or close to) the melting line. In the Einstein-Stokes
model with only free parameter rse for constant η we get

DES ∼ T,

⇒ D2/D0 =
400

273
= 1.46

observed: D2 = 3.5 · 10−9
m2

s
,

D0 = 1.2 · 10−9
m2

s
.

Therefore, Einstein-Stokes is not valid!

The only free parameter in Einstein-Stokes is the radius rSE . Assume rSE scales with the density
r
−1/3
SE ∼ ρ. Then D would increase by (1.38/1)−1/3 = 1.11, which is still not enough. Therefore
something has to happen to rSE , e.g. the free radius decreases more rapidly along the melting
line than ρ. Neutron scattering reveals structural changes in the short range order of water along
the melting line (PRL 96, 067801, (2006)).
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Figure 2: Phase diagram of water. Note the logarithmic scale for the x-axis.
Figure 2: Phase diagram of water. Note the logarithmic scale for the x-axis.
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Figure 1: Measured linewidth (FWHM) in meV versus square of the scattering vector
in Å°2.

viscosity, rse is the particle’s free radius, EA is the activation energy, Tm is the

melting temperature and g∫ is a constant. The density of water at P = 2.9 GPa

and T = 400 K is Ω = 1.38 g/cm3.

• What can you conclude? Is the Stokes-Einstein relation valid?

Figure 3: Measured linewidth (FWHM) in meV versus square of the scattering vector in Å−2.
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