Physics with neutrons 1

Michael Leitner, michael.leitner@frm2.tum.de Winter semester 2016/17 Exercise sheet 1 To be discussed 2016-10-28, room C.3202

Franz Haslbeck, franz.haslbeck@frm2.tum.de

EXERCISE 1.1

The Curie-Joliot hypothesis was introduced in the lecture. It was very controversial from the very beginning. In particular the high proton energy could not be explained: based on Compton-scattering a γ energy of $h\nu = 55$ MeV is needed to produce a 5.7 MeV proton. Such a high γ energy seems to be impossible since the energy of the Po- α radiation is only 5 MeV. Prove and explain — based on the Compton process — the following expression, which casts

the Curie-Joliot hypothesis into doubt:

$$E_p = \frac{2(h\nu)^2}{2h\nu + m_p c^2}$$

The proton rest mass is given by $m_p = 1.6726 \cdot 10^{-27}$ kg.

EXERCISE 1.2

Complement the following table, assuming nonrelativistic matter waves of neutrons and electrons:

	E (eV)	T (K)	λ (Å)	$v~({ m m/s})$	Q_{\max} (Å ⁻¹)
Light (Red Laser) X-rays (Cu K_{α})			6320		
Cold neutrons Thermal neutrons Hot neutrons	$2.1 \cdot 10^{6}$	2300	6	2200	
Fission neutrons Electrons	2.1.10°			$1.57 \cdot 10^{6}$	

Fission neutrons are the ones created in the fission. Then the neutrons are converted to other (much lower) energies to be used in scattering experiments.

 Q_{max} is the theoretical maximal momentum transfer that can be reached in an scattering experiment, defined by

$$Q = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$$

where 2θ is the scattering angle.