Physics with neutrons 1

Michael Leitner, michael.leitner@frm2.tum.de Winter semester 2016/17 Exercise sheet 3 To be discussed 2016-11-11, room C.3202

Franz Haslbeck, franz.haslbeck@frm2.tum.de

EXERCISE 3.1

Given is a sample consisting of one isotope A with the properties given in Fig. 1. The exponential decay constants are $\lambda_B = 4 \cdot 10^{-6} \frac{1}{s}$ and $\lambda_C = 2 \cdot 10^{-4} \frac{1}{s}$. The sample has a density $\rho = 5 \frac{g}{\text{cm}^3}$ and a mass m = 10 g. The isotope A has an atomic mass $m_A = 74 \text{ u}$, a total neutron cross section of $\sigma = \sigma_{abs} + \sigma_{scattering} = 10$ barn and an absorption cross section $\sigma_{abs} = 7$ barn. A thermal neutron beam with a flux of $I_0 = 10^8 \frac{\text{neutrons}}{s}$ hits the cubic sample.

- 1. Calculate the production rate R of the nuclei B. Note that the neutron beam is inhomogeneous throughout the sample due to absorption and scattering. Make the assumption that a neutron interacts with the sample only once or not at all.
- 2. The nuclei B decay via a β^- decay into the excited nuclei state C^* with decay rate λ_B . Calculate $N_B(t)$, the number of nuclei B, as function of time t.
- 3. After seven days the sample is removed from the beam. Calculate the activity directly after removing the sample.
- 4. Can you imagine a scenario where the radioactivity of a sample increases even further after stopping exposing it to neutrons?

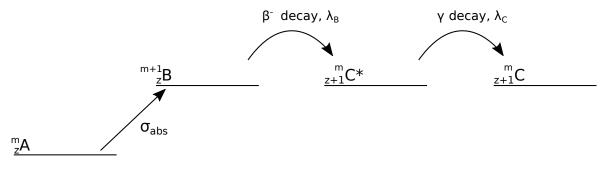


Figure 1