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EXERCISE 4.1

A 2-dimensional hexagonal lattice with lattice constant a is given in the normal space. Draw
the corresponding lattice in reciprocal space. How are the reciprocal lattice vectors determined?
What does the first Brillouin zone look like?

Solution. The hexagonal lattice is determined by the two unit vectors

~a1 = (a11,a12)= a
2

(1,
p

3) and ~a2 = (a21,a22)= a(1,0).

Between real-space unit vectors~ai and reciprocal unit vectors vecb j, the following relation must
hold, just as for 3-dimensional lattices:

~ai ·~b j = 2πδi j.

From this, we can formulate a system of equations that needs to be satisfied:(
ai j

)T · (bi j
)= 2πI,

where (ai j) and (bi j) are the matrices formed by the components of the base vectors, and I is the
identity matrix in two dimensions. Writing A = (ai j)T , we can solve this system by multiplying
with A−1:

(bi j)= 2πA−1,

and A−1 is easily found as

A−1 = 1
det A

(
a22 −a12
−a21 a11

)
.

This means that we have found our reciprocal unit vectors:

~b1 = 4π

a
p

3
(0,1) and ~b2 = 2π

a
p

3
(
p

3,−1),

which again form a hexagonal lattice. The first Brillouin zone therefore is a regular hexagon.
The following sketch shows real and reciprocal unit cells:
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EXERCISE 4.2

Diffraction of neutrons from argon monolayers absorbed on graphite basal planes indicated
that an ordered, two dimensional triangular argon lattice is formed at low temperatures [Taub
et. al. (1977)], see Fig. 1. There are two possible configurations for the argon monolayers,
either commensurate with the graphite lattice or incommensurate corresponding to the closest
packing.
(a) Explain the asymmetric sawtooth profile of the Bragg peaks in Fig. 1.
(b) Determine from the observed reflections displayed in Fig. 1 whether the Ar monolayers
are commensurate or incommensurate with the graphite lattice. The C atoms have a nearest
neighbor distance aC = 2.46 Å in the hexagonal plane of graphite.

Figure 1: (left) Diffraction pattern from a two-dimensional Ar monolayer absorbed on graphite
showing the Bragg reflections (1,0), (1,1) and (2,0). (right) Schematic representation
of a commensurate (top) and incommensurate (bottom) Ar monolayer phase.

Solution. 1. The reciprocal lattice of a two-dimensional crystal consists of an ordered array
of rods aligned normal to the scattering plane. In diffraction experiments there is for
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each Miller index pair (h,k) a minimum value of the scattering angle 2θ = 2θB where θB
corresponds to the Bragg angle

λ= 2d sinθB. (1)

Depending on the size of the array, there will be a continuous distribution of diffracted
intensity for scattering angles greater than 2θB. This produces a characteristic sawtooth
line shape with a sharply rising leading edge on the low-angle side, followed by a trailing
edge extending to larger scattering angles. The maximum of the diffracted intensity Ihk
occurs at the scattering angle 2θB. For a detailed calculation of the line shape we refer to
the basic article by Warren [Warren (1941)]:

Ihk =
mhk|Shk|2L(θ)

sinθ
√

sin2θ−sin2θB

,

where mhk denotes the multiplicity of the Bragg reflection (h,k, l), L(θ) is the Lorentz
factor.

2. Following EXERCISE 5.2, the reciprocal lattice vectors of a two-dimensional heagonal lat-
tice are given

τ1 = 2πa
f0

(
p

3/2,1/2),τ2 = 2πa
f0

(0,1), f0 =
p

3
2

a2,

where a is the nearest-neighbor distance. By identifying the peaks observed at Q = 1.9,3.3
and 3.8 Å-1 as the (1,0), (1,1) and (2,0) Bragg reflections, we find from Eq. (1) aAr = 3.82
Å. This is significantly smaller than the distance

p
3aC = 4.26 Åfor the commensurate

phase sketched in Fig 1, thus the Ar monolayer is clearly incommensurate with that of
the underlying graphite basal plane. aAr = 3.82 Åcorresponds to the minimum of the
Lennard-Jones potential Φ(r) = −Ar−6 +Br−12 known for solid Ar. We conclude that the
structure of the Ar monolayer is primarily determined by the couplings between the Ar
atoms, and interactions with the substrate appear to play a minor role.

EXERCISE 4.3

Prove the lattice sum equation:

∑
vmnp

exp(iQ ·vmnp)= (2π)3

VUC

∑
Ghkl

δ(Q−Ghkl)

Solution. Let v = ma1 + na2 + pa3 be a lattice vector in real space and G = ha∗
1 + ka∗

2 + la∗
3 a

reciprocal lattice vector, with m,n, p,h,k, l integer. Also let Q = qa∗
1 + ra∗

2 + sa∗
3 be an arbitrary

scattering vector.
Now we can write the left hand side of the equation as∑

m,n,p
exp(iQ ·v)= ∑

m,n,p
exp(2πi(qm+ rn+ sp))

(using a∗
i ·a j = 2πδi j, the defining relation of the reciprocal lattice vectors).
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This sum can further be separated in three parts:(∑
m

e2πiqm
)(∑

n
e2πirn

)(∑
p

e2πisp

)
,

of which we now only look at the first. Assume that the crystal has N (without loss of generality
we set N odd) unit cells in the direction of a1. Then the sum becomes

(N−1)/2∑
m=−(N−1)/2

e2πiqm =
(N−1)/2∑

m=0
e2πiqm +

(N−1)/2∑
m=0

e−2πiqm −1= (. . . )= sin Nπq
sinπq

.

For large N, this expression effectively becomes a sum of delta functions at points where q is
integer. Applying this to all three dimensions, we get that Q=Ghkl , i.e.∑

vmnp

= C · ∑
Ghkl

δ(Q−Ghkl)

with some constant C, which can be determined by integrating both sides over the unit cell:∫
cell

d3q
∑

vmnp

=
∫

cell
d3qC · ∑

Ghkl

δ(Q−Ghkl)= C.

To evaluate the left-hand side, we use∫
cell

d3q eiq(v−v′) = (2π)3

VUC
δvv′

and get

C = (2π)3

VUC

∑
v
δvv′ = (2π)3

VUC
.
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