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EXERCISE 10.1

Read the chapter ‘Lattice Dynamics’ in ‘Neutron Scattering in Condensed Matter Physics’ by
A. Furrer.

EXERCISE 10.2

Prove that from the knowledge of the dispersion relation ωq it is possible to determine the
force constants kn using the relation

kn =−Ma
2π

∫ π/a

−π/a
ω2

q cos(nqa)dq.

Solution. From the dispersion relation we have

M
2
ω2 =∑

n
kn(1−cos(n · qa)).

We multiply both sides with cos(m ·ka) and perform an integration over the interval [−π/a,π/a]∫ π/a

−π/a
dq

M
2
ω2 cos(m · qa)=

∫ π/a

−π/a
dq

∑
n

kn(1−cos(n · qa))cos(m · qa)=−2π
a

km.

The last relation holds, since

a
2π

∫ π/a

−π/a
dq cos(m · qa)cos(n · qa)= δmn.

Rearranging the terms, we get

km = Ma
2π

∫ π/a

−π/a
dkω2 cos(m · qa)
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EXERCISE 10.3

The acoustic phonon branches of many "simple" compounds are well explained by the sinusoidal
dispersion relation derived e.g. in the chapter ‘Lattice Dynamics’ in ‘Neutron Scattering in Con-
densed Matter Physics’ by A. Furrer. The transverse acoustic phonon branches observed for
germanium, however, exhibit an unusual flattening of the dispersion relation upon approaching
the zone boundary (Fig. 2). Germanium is a semiconductor with covalent bonds which are usu-
ally formed from two electrons, one from each atom participating in the bond. These electrons
tend to be partially localized midway between the two atoms and constitute the so-called bond
charge (Fig. 1). Derive the phonon dispersion for the one-dimensional chain illustrated in Fig.
1 by following the procedure for a diatomic one-dimensional chain.

Figure 1: Linear chain formed by alternating ion and bond charges. Bond charges are connected
via effective force constants β and β′ to neighboring ion and bond charges, respectively.

Solution. As sketched in Fig. 1, we denote the force constant between an atom of mass m and
the bond charge of mass me by β. In addition, we introduce the force constant β′ to describe the
interaction between two bond charges. In analogy to the diatomic one-dimensional chain, we
get for the equations of motion

mü2n =β(u2n+1 +u2n−1 −2u2n), (1)
me ü2n+1 =β(u2n+2 +u2n −2u2n+1 +β′(u2n+3 +u2n−1 −2u2n+1)= 0, (2)

where we set me = 0 since me ¿ m. Inserting the ansatz

u2n = ξei(ωt+2nqa), u2n+1= ηei(ωt+2nqa)

into the Eqs. (1) and (2) we get

mω2η= 2β
(
η−ξcos

( qa
2

))
,

β
(
ηcos

( qa
2

)
−ξ

)
+β′ξ(cos(qa)−1)= 0,

from which we obtain a relation between the amplitudes ξ and η:

ξ= βcos(qa/2)
β+2β′ sin2(qa/2)

.

Substituting this into Eq. (1) yields [Brüesch (1982)]

ω(q)=
√√√√ 1

m
· 2β(β+2β′)sin2(qa/2)

β+2β′ sin2(qa/2)
. (3)
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For q ¿π/a we get the limit

ω(q)=
√
β+2β′

2m
qa =

√
c
ρ

q = vq,

where we use the same notation as for the linear chain with two different atoms. Fig. 2 shows
dispersion curves calculated from Eq. (3) for different ratios β′/β. We see that the acoustic
phonon branch of Ge can be modelled with the ration 0.5<β′/β< 1.

Figure 2: Dispersion relation of the lower transverse acoustic phonon branch measured for Ge
at 80 K along the [100] direction (after [Nellin and Nilsson (1972)]).
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