Physics with neutrons 2

Michael Leitner, michael.leitner@frm2.tum.de Summer semester 2017

Exercise sheet 11
To be discussed 2017-07-25, room C. 3203

Franz Haslbeck, franz.haslbeck@frm2.tum.de

EXERCISE 11.1

Calculate the spin wave dispersion for an fcc lattice with nearest and next-nearest neighbor interactions J_{1} and J_{2}, respectively. The spin-wave dispersion is given by (Wagner (1972))

$$
\begin{equation*}
\hbar \omega(\mathbf{q})=2 S(J(0)-J(\mathbf{q}))+g \mu_{B} H_{a} \tag{1}
\end{equation*}
$$

with the Fourier transformed exchange function

$$
\begin{equation*}
J(\mathbf{q})=\sum_{j, j^{\prime}} J_{j j^{\prime}} e^{i \mathbf{q} \cdot\left(\mathbf{R}_{j}-\mathbf{R}_{j^{\prime}}\right)} \tag{2}
\end{equation*}
$$

as e.g. given in 'Neutron Scattering in Condensed Matter Physics' by A. Furrer page 145 ff (the book also gives a good introduction to magnetic excitations). Knowing the exchange constants of EuO and EuS^{1}, discuss their dispersion near the zone boundaries.

Solution. In an fcc lattice with lattice parameter a, the nearest-neighbor distance is $a / \sqrt{2}$, of which there are 12 neighbors per atom (along [110] directions), and next-nearest-neighbor distances a, of which there are 5 neighbors (along [100] directions). From the lecture, the dispersion is given by

$$
\hbar \omega_{\mathbf{q}}=2 S(J(0)-J(\mathbf{q}))
$$

with

$$
J(\mathbf{q})=\sum_{j, j^{\prime}} J_{j, j^{\prime}} \exp \left[i \mathbf{q}\left(\mathbf{R}_{j}-\mathbf{R}_{j^{\prime}}\right)\right]
$$

Considering only n.n. and next-n.n. interactions with couplings J_{1} and J_{2}, we get

$$
\begin{gathered}
J(\mathbf{q})=J_{1}\left(e^{i\left(q_{x}+q_{y}\right) a / 2}+e^{-i\left(q_{x}+q_{y}\right) a / 2}+e^{i\left(q_{x}-q_{y}\right) a / 2}+e^{-i\left(q_{x}-q_{y}\right) a / 2}+\right. \\
e^{i\left(q_{x}+q_{z}\right) a / 2}+e^{-i\left(q_{x}+q_{z}\right) a / 2}+e^{i\left(q_{x}-q_{z}\right) a / 2}+e^{-i\left(q_{x}-q_{z}\right) a / 2}+ \\
\left.e^{i\left(q_{y}+q_{z}\right) a / 2}+e^{-i\left(q_{y}+q_{z}\right) a / 2}+e^{i\left(q_{y}-q_{z}\right) a / 2}+e^{-i\left(q_{y}-q_{z}\right) a / 2}\right)+ \\
J_{2}\left(e^{i q_{x} a}+e^{-i q_{x} a}+e^{i q_{y} a}+e^{-i q_{y} a}+e^{i q_{z} a}+e^{-i q_{z} a}\right)
\end{gathered}
$$

The latter part should be familiar from the lecture. Similarly, we replace the exponentials by cosines and get

$$
J(\mathbf{q})=2 J_{1}\left(\cos \left(\frac{a}{2}\left(q_{x}+q_{y}\right)\right)+\cos \left(\frac{a}{2}\left(q_{x}-q_{y}\right)\right)+\cos \left(\frac{a}{2}\left(q_{x}+q_{z}\right)\right)+\cos \left(\frac{a}{2}\left(q_{x}-q_{z}\right)\right)+\right.
$$

[^0]$$
\left.\cos \left(\frac{a}{2}\left(q_{y}+q_{z}\right)\right)+\cos \left(\frac{a}{2}\left(q_{y}-q_{z}\right)\right)\right)+2 J_{2}\left(\cos q_{x} a+\cos q_{y} a+\cos q_{z} a\right)
$$

Thus, the dispersion is

$$
\begin{aligned}
\hbar \omega_{\mathbf{q}}= & 4 S J_{1}\left(6-\cos \left(\frac{a}{2}\left(q_{x}+q_{y}\right)\right)-\cos \left(\frac{a}{2}\left(q_{x}-q_{y}\right)\right)-\cos \left(\frac{a}{2}\left(q_{x}+q_{z}\right)\right)-\cos \left(\frac{a}{2}\left(q_{x}-q_{z}\right)\right)-\right. \\
& \left.\cos \left(\frac{a}{2}\left(q_{y}+q_{z}\right)\right)-\cos \left(\frac{a}{2}\left(q_{y}-q_{z}\right)\right)\right)+4 S J_{2}\left(3-\cos q_{x} a-\cos q_{y} a-\cos q_{z} a\right)
\end{aligned}
$$

Near the zone center, we can expand the cosine and get an isotropic, very similar law as for simple cubic systems:

$$
\begin{aligned}
\hbar \omega_{\mathbf{q}} \approx & 4 S J_{1} \cdot \frac{1}{2} \frac{a^{2}}{4}\left(\left(q_{x}+q_{y}\right)^{2}+\left(q_{x}-q_{y}\right)^{2}+\left(q_{x}+q_{z}\right)^{2}+\left(q_{x}-q_{z}\right)^{2}+\left(q_{y}+q_{z}\right)^{2}+\left(q_{y}-q_{z}\right)^{2}\right) \\
& +4 S J_{2} \cdot \frac{1}{2} a^{2} q^{2}=\frac{1}{2} S J_{1} a^{2}\left(4 q_{x}^{2}+4 q_{y}^{2}+4 q_{z}^{2}\right)+2 S J_{2} a^{2} q^{2}=2 S a^{2} q^{2}\left(J_{1}+J_{2}\right)
\end{aligned}
$$

In the high symmetry directions, we get:

- along [100], $q_{x}=q, q_{y}=q_{z}=0$:

$$
\begin{gathered}
\hbar \omega_{\mathbf{q}}=4 S J_{1}\left(6-\cos \frac{a q}{2}-\cos \frac{a q}{2}-\cos \frac{a q}{2}-\cos \frac{a q}{2}-2\right)+4 S J_{2}(3-\cos (a q)-2) \\
=16 S J_{1}\left(1-\cos \frac{a q}{2}\right)+4 S J_{2}(1-\cos (a q))
\end{gathered}
$$

- along [110], $q_{x}=q_{y}=q^{\prime}=q / \sqrt{2}, q_{z}=0$:

$$
\begin{gathered}
\hbar \omega_{\mathbf{q}}=4 S J_{1}\left(6-\cos \left(a q^{\prime}\right)-1-\cos \frac{a q^{\prime}}{2}-\cos \frac{a q^{\prime}}{2}-\cos \frac{a q^{\prime}}{2}-\cos \frac{a q^{\prime}}{2}\right)+4 S J_{2}\left(3-2 \cos \left(a q^{\prime}\right)-1\right) \\
=16 S J_{1}\left(1-\cos \frac{a q^{\prime}}{2}\right)+4 S\left(J_{1}+2 J_{2}\right)\left(1-\cos \left(a q^{\prime}\right)\right) .
\end{gathered}
$$

- along [111], $q_{x}=q_{y}=q_{z}=q^{\prime \prime}=q / \sqrt{3}$:

$$
\hbar \omega_{\mathbf{q}}=4 S J_{1}\left(6-3 \cos \left(a q^{\prime \prime}\right)-3\right)+4 S J_{2}\left(3-3 \cos \left(a q^{\prime \prime}\right)\right)=12 S\left(J_{1}+J_{2}\right)\left(1-\cos \left(a q^{\prime \prime}\right)\right) .
$$

The following graphs show the dispersions calculated as above for $\mathrm{EuO}(a=5.14 \AA)$ and EuS ($a=5.97 \AA$) using the exchange constants given by [?], which were also shown in the lecture. The zone boundaries are shown as vertical lines:

[^0]: ${ }^{1}$ L. Passell et al., Phys. Rev. B 14 (1976) 4897

