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Abstract

The energy transfers in one collision between a neutron and a liquid are computed
by a method of moments. It is shown that for large momentum transfers a perfect gas
model is correct. For small momentum transfers a macroscopic description of the density
fluctuations in the liquid is applicable. It is in the intermediate region (where diffraction
peaks are observed) that the method of moments is most useful. These different
experimental situations are discussed for liquids where recoil and quantum effects are
negligible, and numerical results are given for argon. An approximation for the so
called autocorrelation function, valid for both long and short time scales and all
distances, is also presented.

1. Introduction. Microscopic dynamics of liquids are very poorly known
at the present time. Apart from neutron scattering experiments which
have been started quite recently 1)2)3) the first information came from
optical measurements on the Brillouin doublet 4)3)8), which confirmed the
existence of sound waves in the liquid. Further information was provided
by dielectric relaxation ?) and nuclear magnetic resonance 8), experiments
leading to a diffusion constant and giving its variation with temperature.
Studies on’ isotopic mixtures give a similar information.

It is very important to notice that in most of these experiments the
relevant time scale is extremely long when compared to a typical time
interval in the liquid motion.

7=~ a[M[kpT]* = 10713 to 10-12sec.

(M is the atomic mass, a an average interatomic distance. We have assumed
a monatomic classical liquid). The characteristic time for optical experi-
ments with an ingoing radiation of wavelength 1is approximately 4/s ~10-10
sec (s = sound velocity in the liquid). In dielectric or NMR measurements,
periods are of order 10-8sec. Also, the ““hopping time” for self diffusion effects
is something like 7 e4Z/%27 > 1 (AE is the activation energy for diffusion).
The situation is entirely different when we come to the inelastic scattering
of slow neutrons by liquids, because = is comparable to 7%/Eg (where Eg
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is the energy of the incoming neutron). Neutrons are sensitive to the de-
tailed microscopic behaviour of the atomic motions. Such a situation cannot
be described correctly by a simple extrapolation of the experimental
results mentioned above which are related with a longer time scale. This,
as we shall see, is a serious objection to the brownian motion or diffusion-
type approximations which have been proposed recently 9) to describe the
neutron inelastic scattering. Our method, here, will be to perform a rigourous
calculation of the moments of a distribution function which is simply related
to the energy spectrum of the outgoing neutrons. This use of moments has
been initiated by Van Vleck in the field of magnetic resonance 10). It is
extremely valuable for all cooperative systems which show a strong disorder.
We applied it recently to the magnetic scattering of neutrons by an assembly
of spins coupled by exchange forces 11). For liquids, the relevant formulas
have been given in a 1943 paper by Yvon 12). The results are given in
terms of:

a) — the potential between atoms

b) — the pair distribution function (as measured by X-rays).

On the other hand there are two drawbacks. First, it is sometimes not
enough to know a distribution function only through its first moments.
Second, we are not always able to relate our results to a single experimental
quantity such as a self diffusion coefficient. (We shall see how these diffi-
culties may be by-passed in some simple situations). Apart from the basic
information on the nature of the liquid state, the knowledge of the moments
of the energy transferred from neutron to liquid in one collision, might be
of interest for reactor technology problems, where one is mainly dealing
with averages.

2. Classical monatomic liguids. We consider now a single collision of a
neutron with a mono-atomic liquid.

Let 2ko and kk; be the momentum of the incoming and outgoing neutrons,
respectively. Two important quantities that come into play are

a) the energy transferred from the neutron to theliquid during the collision

how = (h2/2m)(ko? — k12) (m = neutron mass) (1)
and b) the momentum transfer
h = h(ko — k) (2)

The differential scattering cross section for coherent scattering in a solid
angle d2 and an energy interval % dw is given by the Van Hove formula 13)

dzacoh 2 k]_ 1 it

= = dt it 0) g (¢ 3
0 de — Veon g 2 ), T <0-0) 0 )
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Here a¢,p is the coherent scattering length, ¢, is the k. Fourier component
of the density in the liquid.

9de = Z'i eiK. R (4)

and the ¢ ) symbol denotes a thermal average on the configurations and
velocities in the liquid (with no neutrons present).

We see that the differential coherent cross section essentially gives
information on the time correlation function of g,. Define:

1 e .
pulw) = | dte g (0) g, ©)
(IV is the number of atoms in the liquid).

This function contains all the statistical information we need. Considering
« as a parameter, we call ¢, (w) the distribution function of the w’s. This is
not, in general, identical with the energy spectrum of the outgoing neutrons
for fixed scattering angle @, because « is itself a function of w in such ex-

periments:
me 2mw \}
ke cosgll + 0 (6)

K = 2”20[1 +

However, for crystal spectrometer studies, and liquids with atomic mass
higher than 1, the energy transfer are much smaller than the energy of the
incoming neutrons; mew/fiko2 may be safely neglected in (6). « is then fixed
for a fixed scattering angle, and the observed energy spectrum is directly
proportional to pg;. g, o2 (@). In experiments with very light liquids, or with
sub-thermal neutrons (as is usually the case with velocity selectors), a
numerical computation using (1) and (6) is necessary to go from the theoreti-
cal p,.(w) to the expected energy spectrum at fixed angle.

We now turn to the case of incoherent scattering, where the differential
cross section is given by

d2%6;ne Ry 1 hed

FQ_ 3 — Naginc_k__2__ dt e—iwt <e—ix' Ry(0) eix- Rx(t)> (7)
w 0 T J —co

R; is the coordinate of an arbitrary atom in the liquid.
Again we introduce a distribution function

1 (= . ) .
1’K(w) f dte—lwt < e i Ry (0) aix: Rl(t)> (8)

- 27 J —
The total area of the distribution functions p,(w) and z,(w) are well known

S(x) =/ pilw) dw = 1/N <g-(0) ¢.(0)> (%)
— (4n/x) [¢° R dR g(R) sin (xR) (10)
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where g(R) is the pair density function.
JS7dw) do = 1. (1)
We now show that the higher moments of these distribution functions
can also be computed. Let us put:

_ Jo"p(w) do

» = 12
@eort) =75 o) do 12
— S o, () dw .

n L — kT 13

Whine ) =" o) dw (13
A well-known formula on Fourier transforms gives:
— : 1 d»

" = (—1)” - 14

w coh (K) ( Z) NS(K) <q K dtn QK> ( )

: —ix- R dn i R
O)ninc (K) = (— 1)" <e lme" l> (15)

The important feature in these equations is that all quantities in the thermal
average bracket are to be taken at the same time, so that they may be
computed exactly through a repeated use of the equations of motion. These
equations are quantum mechanical. However, it is correct to use their
classical form provided that the following assumptions are satisfied:

a) — the recoil of the atoms is negligible. If M is the atomic mass and
T the temperature of the incident neutrons, this condition may be approxi-
mated by ’

mTo/MT L1

b) — quantum effects in the liquid motion are small.

A first condition here is that the zero point energy (o 72/Ma?) be small
when compared to the average potential energy. This is equivalent to
consideration of the De Boer parameter 14). London 15) has shown that,
when this condition is not satisfied, the liquid configuration is the most
stable even at 0°K, so that 3He and 4He are the only outstanding examples.
A second condition for classical motion would be %2/Ma? < kgT. In practice,
when the first condition is satisfied, the second is also satisfied in general.

We now restrict ourselves to situations where assumptions a) and &) are
correct, and compute the moments in the classical approximation. It is first
to be noticed that all moments of odd order vanish. The second order

moment for coherent scattering is:
wZoon (k) = SEP PPN
Wooh \K} = NS(K) G—r dr2 G

1 <l d
NS(«) | a I
2 dv; d

~ NS() 2 <

2
>

X3 sty —z0) 16
a A c ’ (16)
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(where we have taken the x axis in the direction of K). The velocities
vy = dx;/dt of different atoms are uncorrelated, and the average squares of
the velocities are given by the Maxwell law, so that

wZoon = k25T [MS(x) (17)
Similarly:
Wine () = w2 (k5T /M) (18)
- 1 ds
@ coh = NS(x) Ge g I
1 l 42 2
= NS(g Cjam e’
= NSI(K) I:K4 s <v2vs2 ey 4 ’MLZ S wp? _gg_i R TR %e"‘“lg_{_
< oU U TxTst

+ e 2 < or: ox e >:| (20)

(a5 = x5 — x3)
Here U(R1, Rz ... Ry) is the potential energy of the N atoms. The pro-
bability of a configuration of the N atoms is proportional to e #/*=T so
that, if F(R; ... Ry) is any regular function

(F(BU/E)x,)) = kgT <3F/6xl> (21)

as may be seen through an integration by parts. This remark of Yvon 12)
greatly simplifies the above expression for w4ej, which finally reads:

_ 1 keT \2 ksT 2U ]
1 =— 13 4( > 2 iy 22
@%eon(x) s() [ “\ar ) T v 2 < i (22)

We get in the same way

whine(k) = 3r4(kpT [M)2 + «2(kpT|M?) 02U [0x:12> (23)
If we further assume that the potential energy U is of the form
U = Zi<s V(Ry) (24)

we may express the moments in terms of this V function and of the pair
density function g(R)

— wdkpT 1 — cos(xx) 2V

w4c0h (K) = W [3kBT +de g(R) o2 pwe; (25)
— wikpT 1 o2V

Whine (k) = =2 | 3 #aT + f dR g(R) — —— ] (26)

These are the basic formulas which will be used in the following sections.



830 P. G. DE GENNES

3. Incoherent scattering. We discuss first the distribution function 7, (w)
for the incoherent part of the scattering, which is the simpler of the two.
Its area is independent of K by (11) so that the total scattered intensity is
essentially isotropic (apart from the effect of %£1/k¢ in the cross section
formula). However, the moments do depend on «. The second moment,
which is given by (18) is independent of the potential energy function V:
it has the same value in a real liquid as in a perfect gas at the same temper-
ature and with the same atomic mass. At first sight, one could then be
tempted to take for 7, (w) the perfect gas value which is (neglecting recoil):

—Mw?
4 (w perf gas = anBT 2K2k;T (27)

This is not correct in general, as shown by the fourth moment. This fourth
moment (26) may be written:

0%ine(k) = 3[@2ine()]2 + wine(x) 202 (28)

where we have introduced a characteristic frequeﬁcy £2¢ through:

MQq? deg a

x2

V@R . (29)

2 0V 32V] (30)

4 [
— | R |22
3 fo ke | =77 T om0

£ is strongly temperature dependent because it is most sensitive to g(R)
in the region where V(R) varies steeply.

1) — When « is large, w2ine(x) (which is proportional to «2) is larger than
02, and the second term on the right iz (28) is negligible when compared
to the first. The fourth moment is then what we expect for a gaussian

w? = 3[w?]? and the perfect gas model is applicable.

2) — On the contrary, when « gets small, the fourth moment is much
larger than expected for a Gaussian curve; this means that the actual 7, (w)
has large wings, and is indeed what we should find in terms of the diffusion
model (this model is correct when one deals with small values of « and small
energy transfers; long distances and long time scale). We accordingly
expect 7, (w) to be well described here by a Lorentz curve, as deduced from
diffusion considerations 9):

Ax?

1
7 w2 4 A%A (1)

Felw) =

It is to be noted, however, that the above shape is not correct far in the wings
(short time scale region). In fact, it would predict infinite moments.

We now proceed to show that a more detailed model may be proposed, and

fitted to the values of the moments over the whole range of « values. It is.
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in fact, a straightforward extension to liquids of a calculation by Anderson
and Weiss 16) on exchange narrowing.
We consider the Fourier transform of 7«(w)

pelt) = [ dw 7, (w) € (32)
— < e—ixa:x(()) eixz;(t) > (33)
Let Vi(¢) be the instantaneous velocity along the x axis of atom (1). At

every instant v; is distributed according to a Gaussian probability law, and
a well known theorem says that the same is true for

21(t) — %1(0) = f5 va(t) d¥ (34)
which is a sum of such variables. It is then easy to see that
(OO — exp (— b (malt) — 21(0)) (35)

and this may be written
pult) = exp(— 2 [g A’ (¢ — ¢') <1 (0) va(t)>) (36)

Up to now our formulas are rigourous for a classical system (fluid or solid).
In a crystalline solid, the correlation function <v;(0) v1(f)> displays an os-
cillatory behaviour with decreasing amplitude. Such oscillations are much
more strongly damped in the liquid phase. We shall use here the extreme
approximation where the oscillations are completely neglected, and choose
an approximate expression giving a smooth decrease. It then turns out that
the final numerical results are rather insensitive to the analytical form cho-
sen, provided that it gives the correct values for the moments of the distri-
bution function. We take:

w1(0) v1(#)> = (kBT /M) exp(— $20%?) (37)

£2¢~1 appears here as a correlation time for velocities in the liquid. Direct
computation of the moments of #, using its Fourier transform as given by
(36) and (37) shows that Qg is identical with the earlier defined quantity (eq.
30). :

The limiting behaviour of p(¢) for large and small momentum transfers
are easily shown to be

pelt) = exp(— $02inc()i2) Q02 < 0%ne (k) (38)
/7w w_zinc K —
pult) = exp (— /= Qo( ! t) Q> 0lme (0)  (39)

These are exactly the forms we expected from our preliminary discussion,
as may be seen by taking the Fourier transforms of (27) and (31}, provided
we take:

A = (z/2)t (kT |MQy) (40)
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Equations (40) and (30) give the self diffusion coefficient 4 in terms of the
pair density function g(R) and the potential energy function V(R). Unfortu-
nately it turns out that the latter is very poorly known in liquids where it
has been measured, so that a direct comparison is not possible.

Still it is gratifying that the theory depends on one parameter 4 only,
whose value may be obtained independently by making use of measured
values of A4 and eq. (40).

, Aw

o

T %
/

/

05 /
\

kgTy ¥ -1

—XpheTy Bagt,

a 925 a5 a75 7 125 17 175
Fig. 1.

Apart from the limiting cases that we already considered, we may always
calculate 7,(w) for intermediate values of « by a numerical Fourier inversion
of eq. (36) supplemented by (37).This is rather tedious, however, and we prefer
to plot, as a function of «, the width at half maximum Aw(x) for the distri-
bution function 7,(w). To avoid dimensional factors we actually plot dw/Qg
as a function of «(kpT/M)* Q¢! (fig. 1). Numerical techniques relevant to
this width problem are found in a paper by Anderson 17).

4. Coherent scattering. The situation here is somewhat more complex because
correlations between different atoms come into play.

We plot the “‘theoretical’’ values of a?coh and w_4wh/3[w_’f’wh]2 for liquid

argon at two typical temperatures along the vapour curve. We choose argon
because



LIQUID DYNAMICS AND INELASTIC SCATTERING OF NEUTRONS 833

a) — the pair density function is rather well known ; here we have used the
values from X-ray scattering experiments by Eisenstein and Gingrich?8).

b) — it is reasonable to take V(R) as a Lennard Jones potential whose
parameters are known through measurements in the gas phase:

V(R) = 475 kg[(o/R)!? — (o/R)¢]

with ¢ = 3.40 A.

The second moment (eq. 17) depends only on the pair density function
g(R) and its accuracy is comparable to that of the X-ray measurements.
The fourth moment, however, is given by:

24 ARGON ,

PO VAN
03 / /]L Yo |
/

o - -
N/ | _Jx (A7) —

g ) 2 3 4 5 3 7 8 9

M2S(x) — 4n fw 1 oV < sin (KR))
— T w4 = 3kgT R2dR g(R) | — 1—
g leon () = SksT +-5f ¢R) | % 7R R )T
% 1 oV 1 1 .
+ (3—Rz—‘ — —E' a—R'> (3 — 3R3 (2KR(US(KR)+(K2R2— 2) Sln(KR))] (41)
0% 7 ufc'oh(m
(e V)
08 7
/
/
a7 7 IT
. : / //
a6 7 w4
N
05 T=1267°K If‘v.’ :
/o
‘! i

This integral is rather sensitive to the values of g(R) around R = ¢ and the
accuracy of the fourth moment is accordingly lower, especially when we
compare the values at two temperatures, g(R) being strongly temperature
dependent in that range of » values (We still think it better to use the ex-
perimental g(R) rather than one of the various theoretical values proposed
up to now).
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The results are shown in figures 2 and 3. The second moment gives us a
first indication on the width of the distribution function, and the ratio

®%/3[w?]2 (equal to unity for a Gaussian distribution) is a direct test for the
perfect gas model, which predicts

Pl _II:M]* < Mw2> 42
K(w perf.gas — P 27ZkBT exp - 2K2kBT ( )

(recoil of the atoms being always neglected).

Here again, we find different behaviours for the distribution function,
depending on the values of the parameters.

1) — For ko 2, the perfect gas model is satisfactory. This is essentially
the situation encountered by Pelah, Whittemore and MacReynolds 3)
in their experiments on liquid lead, with neutrons of short wave length
(~ 1A) and large scattering angles. In such a situation, the line width is
expected to vary as T

coh

— 2
[ Uzcoh]

T=844°K

1Al
\ =
S\

/\
r e A

1 s

>N

— X (A~
) I I
g 1 2 3 4 5 S 7 8 9
Fig. 3.

2) — For intermediate values of «, the moments undergo strong oscillating
variations. The major phenomenon is the following: when the value of «
corresponds to one of the diffraction peaks in the X ray pattern, w2
becomes small and w4eon/3[w2eon]? becomes large. This means that for such
x values the distribution function is narrow and the shape is closer to a
Lorentzian than to a Gaussian.
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Unfortunately we cannot here supplement our mgments calculation by
a detailed picture of correlation functions; this would involve approxi-
mations more difficult to justify than in the incoherent case. For a numerical
study of halfwidths, and “‘intermediate’” or large values of « we propose the
following empirical procedure: define a frequency Q(x) by the relation

w4eon = w2con [3(0260}1 + _QZ]

This is a generalisation of the earlier introduced £ (and indeed Q2(co) = Q).
Substitute [w2,4]* to x(kpT/M)* in the halfwidth plot (fig. 1) and 2(x) to Q.
Comparison with other models suggests that the resulting dw/2 should be
a good first approximation to the true values. Results of this approximation
for Argon are shown on figure 4.

FhoLy

210 : —t 4

[~

T=126,7°K /

1 / ﬁg;uk
| / N /

JI Y
BN,
Yy —X (é")-’

0 1 2 3 4 5 6 7 8 9

Fig. 4.

3) — For small « values the moments have not been plotted in fig. 2
and 3 because of experimental inaccuracies in S(«). This region is essentially
the same as the one covered by optical experiments. It is a difficult region
for neutron scattering because the intensities are small (except near the critical
point). On the other hand, it is a comfortable region for the theoretical
physicist, because macroscopic considerations may be applied to these
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long wave lengths and long time scale phenomena. From experiment and
from a well known analysis by Landau, Placzeck and Gross19) one
knows that the distribution function consists of three lsnes: one central line
(w = O) which is important mainly near the critical point, and two phonon
lines {(w = 4 ¢«) on both sides (Brillouin doublet). In our approximation
(neglecting recoil and quantum effects) both phonon lines have:the same
intensity $I;. The ratio I1/p of the intensities in Brillouin doublet to the
intensity in the central line many be deduced from our equations for the
second moment.

I «® hpT
_— CZK2 —
I + Io MS(x)

©2%on = (43)
The low « limit of S(x) is related to the isothermal compressibility (0p/én)p
by a well known relation

lim, ,,S(x) = kT (0n/op)r (44)

The sound velocity ¢ is also known through the adiabatic compressibility
(0p]om)s:
c2 = (1/M)(op/on)s. (45)

i~ (ol G ). “

This is precisely the value calculated by Gross 1%) using a thermodynamic
argument. In spite of this agreement we believe that a detailed test of the
three line model by computation of the moments should take into account
damping effects. These effects might be independently estimated by means
of macroscopic equations for heat flow, mass flow and mechanical motion.
Such a calculation has been undertaken by Butterworth and Marshall 29)
(We disagree, however, with their assumptions on the existence of trans-
verse vibrations).

To conclude our remarks we may say that neutron experiments on
coherent scatterers in that range of small « values would essentially lead
to a determination of the sound velocity, dispersion and attenuation. A
study of the central line width would also provide a measurement of a heat
transfer coefficient 13).

We then get:

5). Conclusions. The most important fact is that the behaviour of the
inelastic scattering essentially depends on the value of the momentum
transfer

1) — for large « values the perfect gas model is applicable both for coherent
and incoherent scattering.
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2) — for intermediate « values and coherent scattering correlation effects
between neighbouring atoms are important and often result in a strong
narrowing of the distribution function.

3) — for small « values the results are fundamentally different depending
on whether the scattering is coherent (three lines, which reduce to the
Brillouin doublet for temperatures well below T';) or incoherent (one single
Lorentzian line).

It is easier to make complete experimental investigation over the whole
range of x values with a crystal spectrometer equipment than with a velocity
selector: in the latter case wave lengths are longer (~ 4A) and even at large
angles the « values do not usually exceed the “intermediate” range.

We now turn to some remarks on more general situations:

1) — diatomic liquids —~ The formulas for the moments are heavier, and also
interaction potentials are poorly known. We may however derive some
simple, approximate results for the second moment.

For incoherent scattering, we still have:

[7w) do =1 (47)
WZine (k) = k2 <|dx/d]2> (48)

But this average square velocity is not simply equal to kgT /M (where M
is the afomic mass). Also for coherent scattering, putting again

g g-> = NS5(x) (49)
(where N is the number of atoms) we may write / p,(w) dw = S(«) and
U K2 dxl dxj .
Y- ¢ — 2 T einzy 50
R R A A (50)

Here, in contrast with the monoatomic case, there exist velocity correlations
between different atoms.

We still expect that these correlations are small, except for atoms be-
longing to the same molecule. These velocity correlations inside one molecule
should be very nearly the same as in a perfect diatomic gas, where they may
be computed by standard techniques of classical mechanics.

This leads to the following values

w0ne () = (5/6) x2kpT|M (51)
_ <2kpT
WZeop (K) = HSLZK) [% + —2{5 (2¢ cos £ + (£2 — 2) sin s)] (52)

where & = «d and d is the atomic distance in the molecule. The derivation
of (51) and (52) neglects vibrational modulations of 4 (which lead to small
and easily separated corrections for thermal neutrons). Also the case of



838 P. G. DE GENNES

nuclear spin correlations between the two atoms in the molecule (as in
hydrogen) should be treated separately.

2) — Amorphous solids ~ Kinetics of amorphous media are very poorly
known, except for very long wave length phenomena. The method of mo-
ments may prove very useful here: assume for instance that there are
different atomic species, each atom being associated with a coherent
scattering amplitude a; (depending on the atomic species to which () belongs
We then have, for coherent scattering:

d2e ki 1 | . :

Wi~ k—(l,E;J dt e Ky azay ¢ =@ em @) (53)
Formulas for the moments of order 0,2 and 4 may easily be derived: they
are simple generalisations of equations (10), (17) and (22). The pair density
functions and rigidity coefficients that come in might be directly estimated
from simple models of the amorphous phase.

3) — Reactor technology — The formulas which have been developed up to
now are obviously not suitable for thermalisation problems, since we
neglected the moments of odd order in the distribution function. However,
the information collected suggests that for incident neutron wave lengths
shorter than say one half the average intermolecular distance, a good
starting approximation should be provided by the perfect gas model for
the corresponding (mono or polyatomic) molecules.

This statement should of course be refined by a more detailed analysis,
especially for associated liquids such as water.
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