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A b s t r a c t  

The  ene rgy  t r ans fe r s  in  one collision be t w een  a n e u t r o n  a n d  a l iquid  are c o m p u t e d  
b y  a m e t h o d  of m o m e n t s .  I t  is shown  t h a t  for  large m o m e n t u m  t rans fe r s  a pe r fec t  gas  
model  is correct .  F o r  smal l  m o m e n t u m  t rans fe r s  a macroscopic  desc r ip t ion  of the  dens i ty  
f luc tua t ions  in t he  l iquid  is appl icable .  I t  is in the  i n t e r m e d i a t e  region (where d i f f rac t ion  
peaks  are observed)  t h a t  the  m e t h o d  of m o m e n t s  is m o s t  useful.  These  d i f fe ren t  
e x p e r i m e n t a l  s i t ua t ions  are 'd iscussed for  l iquids  where  recoil  a n d  q u a n t u m  effects  are 
negligible,  a n d  n u m e r i c a l  resu l t s  are g iven  for  argon.  An  a p p r o x i m a t i o n  for  the  so 
called au toco r r e l a t i on  func t ion ,  va l id  for  b o t h  long a n d  s h o r t  t ime  scales and  all 
d is tances ,  is also presen ted .  

1. Introduct ion.  Microscopic dynamics of liquids are very poorly known 
at the presen~ time. Apart from neutron scattering experiments which 
have been started quite recently 1)2)3) the first information came from 
optical measurements on the Brillouin doublet 4)5)6), which confirmed the 
existence of sound waves in the liquid. Further information was provided 
by dielectric relaxation 7) and nuclear magnetic resonance 8), experiments 
leading to a diffusion constant and giving its variation with temperature. 
Studies on" isotopic mixtures give a similar information. 

I t  is very important to notice that  in most of these experiments the 
relevant time scale is extremely .long when compared to a typical time 
interval in the liquid motion. 

"r ~-- a[M/kBT]  ~- = 10 -13 to 10 -12 sec. 

(M is the atomic mass, a an average interatomic distance. We have assumed 
a monatomic classical liquid). The characteristic time for optical experi- 
ments with an ingoing radiation of wavelength 2 is approximately 2Is ~-~ 10 -10 
sec (s = sound velocity in the liquid). In dielectric or NMR measurements, 
periods are of order 10 -s sec. Also, the "hopping time" for self diffusion effects 
is something like T e "tE/I~T >~ -r (A E  is the activation energy for diffusion). 

The situation is entirely different when we come to the inelastic scattering 
of slow neutrons by liquids, because r is comparable to l~/Eo (where E0 
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is the energy of the incoming neutron). Neutrons are sensitive to the de- 
tailed microscopic behaviour of the atomic motions. Such a situation cannot 
be described correctly by  a simple extrapolation of the experimental 
results mentioned above which are related with a longer time scale. This, 
as we shall see, is a serious objection to the brownian motion or diffusion- 
type  approximations which have been proposed recently 9) to describe the 
neutron inelastic scattering. Our method, here, will be to perform a rigourous 
calculation of the moments of a distribution function which is simply related 
to the energy spectrum of the outgoing neutrons. This use of moments has 
been initiated by  V a n  V l e c k  in the field of magnetic resonance 10). I t  is 
extremely valuable for all cooperative systems which show a strong disorder. 
We applied it recently to the magnetic scattering of neutrons by  an assembly 
of spins coupled by  exchange forces n). For liquids, the relevant formulas 
have been given in a 1943 paper by  Y v o n  12). The results are given in 
terms of: 

a) - the potential between atoms 
b) - the pair distribution function (as measured by  X-rays). 
On the other hand there are two drawbacks. First, it is sometimes not 

enough to know a distribution function only through its first moments. 
Second, we are not always able to relate our results to a single experimental 
quant i ty  such as a self diffusion coefficient. (We shall see how these diffi- 
culties may be by-passed in some simple situations). Apart from the basic 
information on the nature of the liquid state, the knowledge of the moments 
of the energy transferred from neutron to hquid in one collision, might be 
of interest for reactor technology problems, where one is mainly dealing 
with averages. 

2. Classical monatomic liquids. We consider now a single collision of a 
neutron with a mono-atomic liquid. 

Let hko and kkl be the momentum of the incoming and outgoing neutrons, 
respectively. Two important quantities that  come into play are 

a) the energy transferred from the neutron to the liquid during the collision 

?Z¢o = ( h 2 / 2 m ) ( k o  2 - -  kl 2) (m = neu t ron  mass) 

and b) the momentum transfer 

(l) 

The differential scattering cross section for coherent scattering in a solid 
angle d.Q and an energy interval ~ dco is given by  the Van  H o v e  formula 13) 

d~d2~C°hd------~- a2c°h k~kl 2~1 f~-oo dte -i°'' <q_~(O)q~(t)> (3) 

=  (ko - (2 )  
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Here  acoh is the coherent  scat ter ing length, qK is th~ K. Fourier  component  
of the densi ty  in the liquid. 

qK ----- Y,t e i~" R, (4) 

and the ( ) symbol  denotes  a thermal  average on the configurations and 
velocities in the liquid (with no neutrons  present). 

We see tha t  the differential coherent  cross section essentially gives 
information on the t ime correlation function of q~. Define '  

f_ 1 d t e  -i~t (q_~(O) qK(t)) (5) 
p ~ ( c o ) -  2z~N oo 

(N is the number  of a toms in the liquid). 
This function contains all the  statistical information we need. Considering 
as a parameter ,  we call p~(oJ) the distr ibution function of the o~'s. This is 

not, in general, identical with the energy spec t rum of the outgoing neutrons 
for fixed scat ter ing angle % because K is itself a function of ~o in such ex- 
periments:  

E m~o ( 2mo~ ~½1 
K = 2½k0 I + ~ cos 9 1 + J~tko 2 ] .j (6) 

However ,  for crystal  spectrometer  studies, and liquids with atomic mass  
higher than 1, the energy transfer are much smaller than the energy of the 
incoming neutrons;  mo~/t~ko 2 may  be safely neglected in (6). K is then fixed 
for a fixed scat ter ing angle, and the observed energy spect rum is direct ly 
proport ional  to Pu.o sin,/2 (co). In experiments  with very  light liquids, or with 
sub- thermal  neutrons (as is usually the case with veloci ty selectors), a 
numerical  computa t ion  using (l) and (6) is necessary to go from the theoreti-  
cal PK(~o) to  the expected  energy spect rum at fixed angle. 

We now turn  to the case of incoherent scattering, where the differential 
cross section is given b y  

d2----~'n---fi° = Na2'nc k--!-I 1-!- f~-oo dt e-'~'t (e -''~" R''°' e '~ 'm"))  (7) 
d.O dw ko 2zt 

R1 is the coordinate of an arb i t rary  a tom in the liquid. 
Again we introduce a distr ibution function 

r~(co) = ~ -=o dt e -~°~ ( e -i*" R,(0) ei~. a,(~l) (8) 

The total  area of the distr ibution functions p~(co) and ~(i~) are well known 

S(K) =-- f p,¢(w) doJ = 1IN <q_~(0)q~(0)> (9) 

= (4~/K) f ~  R dR g(R) sin (~R) (10) 
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where g(R) is the pair density function. 

f r~(eo) doJ = 1. (11) 

We now show that  the higher moments of these distribution functions 
can also be computed. Let us put:  

o2*--,oh(~:) = f (°nP~(°J) do~ (12) 
f p~(co) do, 

o~n----,n c (~) __ f wnrK(co) dco (I 3) 
f r~(w) da~ 

A well-known formula on Fourier transforms gives: 

wn---co~ (K) = (-- i) n 1 d n 
' NS(K----~ <q-'~-d7 ~ qK> (14) 

__ d n 
cOninc (K) = (--  i) n <e -{"' m _ _  e{~ • m> (15) 

din 

The important feature in these equations is that  all quantities in the thermal 
average bracket are to be taken at the same lime, so that  they may be 
computed exactly through a repeated use of the equations of motion. These 
equations are quantum mechanical. However, it is correct to use their 
classical form provided that  the following assump{ions are satisfied: 

a) - the recoil of the atoms is negligible. If M is the atomic mass and 
To the temperature of the incident neutrons, this condition may be approxi- 
mated by 

m T o / M T  << 1 

b) - quantum effects in the liquid motion are small. 
A first condition here is that  the zero point energy (co -h2/Ma 2) be small 

when compared to the average potential energy. This is equivalent to 
consideration of the D e B o e r  parameter 14). L o n  do n 15) has shown that,  
when this condition is not satisfied, the liquid configuration is the most 
stable even at 0°K, so that  aHe and 4He are the only outstanding examples. 
A second condition for classical motion would be h~/Ma 2 ~ kBT. In practice, 
when the first condition is satisfied, the second is also satisfied in general. 

We now restrict ourselves to situations where assumptions a) and b) are 
correct, and compute the moments in the classical approximation. I t  is first 
to be noticed that  all moments of odd order vanish. The second order 
moment for coherent scattering is: 

 o%h = 
1 d ~ 

NS(K) <q-K-d7 r qK> 

1 i d q2  
< -6 > 

K 2 dxi dx I eiX(x,_x,) > 
- -  Z~j< 
NS(K) dt d/ 

(16) 
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(where we have taken the x axis in the direction of K). The velocities 
v, = dxi/dt of different atoms are uncorrelated, and the average squares of 
the velocities are given by the Maxwell law, so that  

O.)2eo h = ~:2kBT/MS(K ) 
Similarly: 

o~hnc (K) = K2(kBT/M) 

1 d 4 
~°4 *°h = NS(,~------) <q-~ ~ q'`> 

1 ] d2 ~. 

NS(~) < --~q' j  

, [  K 4 ~i j  <vi2vj ~ 
NS(~) 

(17) 

(18) 

• i ~ a  O U  i . ~ ,  OU 
e ~'~ > + ~ Y,i~ <vj ~" - - - -  e --  vt~ Oxj e ' ~ " ) +  Vx, 

,<2 OU OU ei~,, >1 (20) 
+ ~ X~j < ox---[. Oxj 

(x , j  = x j  - x d  

Here U(R1, R2 ... R2v) is the potential energy of the N atomg. The pro- 
bability of a configuration of the N atoms is proportional to e -~'/k~T, so 
that, if F(R1 ... R2v) is any regular function 

<F(OU]Oxi)) = kBT <OF/Ox,) (21) 

as may be seen through an integration by parts. This remark of Y v o n  12) 

greatly simplifies the above expression for cO4coh, which finally reads: 

- -  1 ~ [ k B T \ 2  kBT 02U e'KX")] 
c°4c°h('~) ---- s(-~£) _3K4 k---M--) -5 ,,:2 _~_~. Zit (_~x,ax.___ 7 (22) 

We get in the same way 

~O4inc(~) = 3~4(kBT/M) 2 + K2(kBT/M 2) <02U/Oxl 2) (2,3) 

If we further assume that  the potential energy U is of the form 

U = X,<j V(R,j) (24) 

we may express the moments in terms of this V function and of the pair 
density function g(R) 

- -  K4kBT ~ f 1 - -  c°s(Kx) 02V ] (25) 
m4coh (~:) --  M2S(K~ 3kBr  -5 dR g(R) ~:2 Ox 2 

r.O4~nc (~) --  M----- F -  3 kBT + dR g(R) K 2 Ox 2 

These are the basic formulas which will be used in the following sections. 
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3. Incoherent scattering. We discuss first the distribution function r~(o~) 
for the incoherent part  of the scattering, which is the simpler of the two. 
Its  area is independent of K by  (11) so that  the total scattered intensity is 
essentially isotropic (apart from the effect of kl/ko in the cross section 
formula). However, the moments do depend on K. The second moment, 
which is given by  (18) is independent of the potential energy function V: 
it has the same value in a real liquid as in a perfect gas at the same temper- 
ature and with the same atomic mass. At first sight, one could then be 
tempted to take for r~(~o) the perfect gas value which is (neglecting recoil)" 

r~(@pcrf.~,s - 1 . [  M ~½exp(- -M~o2~ (27, 
K 2K2kB T / 2=kBT 

This is not correct in general, as shown by  the fourth moment. This fourth 
moment (26) may be written: 

W4inc(K) = 3[W2fnc(K)] 2 + oj2tnc(K)QO 2 (28) 

where we have introduced a characteristic frequei~cy ~2o through: 

• f 09' 
MY2o 2 = dR g(R) ~ V(R) (29) 

fo ~' [2 aV 02V 1 (30) 
_ - -  4=3 R 2 dR g(R) ---ff 8--ff + aR 2 J 

z90 is strongly temperature dependent because it is most sensitive to g(R) 
in the region where V(R) varies steeply. 

1) - When K is large, toe, no(K) (which is proportional to K 2) is larger than 
~90 ~, and the second term on the right in (28) is negligible when compared 
to the first. The fourth moment is then what we expect for a gaussian 

w 4 ----- 3[co2] 2 and the perfect gas model is applicable. 
2) - On the contrary, when K gets small, the fourth moment is much 

larger than expected for a Gaussian curve; this means that  the actual rK(@ 
has large wings, and is indeed what we should find in terms of the diffusion 
model (this model is correct when one deals with small values of K and small 
energy transfers; long distances and long time scale). We accordingly 
expect r~(w) to be well described here by  a Lorentz curve, as deduced from 
diffusion considerations 9). 

1 AK 2 
rK(w) = (31) 

= co ~. + A2K 4 

It  is to be noted, however, that  the above shape is not correct far in the wings 
(short time scale region). In fact, it would predict infinite moments. 

We now proceed to show that a more detailed model may  be proposed, and 
fi t ted to the values of the moments over the whole range of ,~ values. It is  
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in fact, a s t ra ightforward extension to liquids of a calculation b y  A n d e r s o n  
and W e i s s  is) on exchange narrowing. 

We consider the  Fourier  t ransform of rK(oJ) 

p,,(t) = f dco r.(co) e i~t (32) 

= ( e -i~'(°) e i'~'(t) ) (33) 

Let  Vl(t) be the ins tantaneous  veloci ty  along the x axis of a tom (1). At  
every instant  Vl is d is t r ibuted according to a Gaussian probabi l i ty  law, and 
a well known theorem says tha t  the same is t rue for 

xl(t) - -  Xl(0) ---- fo ~ vl(t') dr' (34) 

which is a sum of such variables. I t  is then easy to see tha t  

( e i~txla)-x'(°)l ) = exp (--  ½K 2 ((xl(t) - -  Xl(0))2)) (35) 

and this m a y  be wri t ten 

p,(t) = exp( - -  K2f~ dt' (t - -  t') (Vl(0) vl(t')>) (36) 

Up to now our formulas are rigourous for a classical sys tem (fluid or solid). 
In a crystalline solid, the  correlation function (Vl(0) vl(t)) displays an os- 
cillatory behaviour  with decreasing ampli tude.  Such oscillations are much 
more s t rongly damped  in the liquid phase. We shall use here the extreme 
approximat ion  where the oscillations are complete ly  neglected, and choose 
an approx imate  expression giving a smooth  decrease. I t  then turns out  tha t  
the final numerical  results are ra ther  insensitive to the analyt ical  form cho- 
sen, provided  tha t  it gives the correct values for the moments  of the distri- 
but ion function. We take" 

(vl(0) vl(t)) = (kBT/M) exp( - -  ½S2o2t 2) (37) 

/20 -1 appears  here as a correlation t ime for velocities in the liquid. Direct  
computa t ion  of the moments  of r ,  using its Fourier  t ransform as given by  
(36) and (37) shows tha t  ~0 is identical with the earlier defined quan t i ty  (eq. 
30). 

The limiting behaviour  of p,(t) for large and small m o m e n t u m  transfers 
are easily shown to be 

p~(t) = exp( - -  ½o~2inc(K)t 2) .(-2o ~" < cO2,nc (K) (38) 

pK(t) = exp ( - - J / 2  cO"inc ( ~ ) t )  ~2o 2 >~ co2---tnc (K) (39, 
f2o 

These are exact ly  the forms we expected from our prel iminary discussion, 
as may  be seen b y  taking the Fourier  t ransforms of (27) and (31), provided 
we take : 

A : (u/2)½ (kBT/MQo) (40) 
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Equations (40) and (30) give the self diffusion coefficient A in terms of the 
pair density function g(R) and the potential energy function V(R). Unfortu- 
nately it turns out that  the latter is very poorly known in liquids where it 
has been measured, so that  a direct comparison is not possible. 

Still it is gratifying that  the theory depends on one parameter A only, 
whose value may  be obtained independently by  making use of measured 
values of A and eq. (40). 
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Apart from the limiting cases that  we already considered, we may always 
calculate r,(co) for intermediate values of K by a numerical Fourier inversion 
of eq. (36) supplemented by  (37).This is rather tedious, however, and we prefer 
to plot, as a function of K, the width at half maximum Ao~(K) for the distri- 
bution function r~(co). To avoid dimensional factors we actually plot/1co/Y20 
as a function of K(kBT/M)~ ~20 -1 (fig. 1). Numerical techniques relevant to 
this width problem are found in a paper by  A n d e r s o n  17). 

4. Coherent scattering. The situation here is somewhat more complex because 
correlations between different atoms come into play. 

We plot the "theoretical" values of co2--~oh a n d  "~coh/3[~coh] 2 for liquid 
argon at two typical temperatures along the vapour curve. We choose argon 
because 
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a) - the pair density function is rather well known; here we have used the 
values from X-ray scattering experiments by  E i s e n s t  e in  and Gingrich18).  

b) - it is reasonable to take V(R) as a Lennard Jones potential whose 
parameters are known through measurements in the gas phase: 

V(R) = 475 kB[(a/R) 12 -- (a/R) 6] 

with a ---- 3.40 A. 
The second moment (eq. 17) depends only on the pair density function 

g(R) and its accuracy is comparable to that  of the X-ray measurements. 
The fourth moment, however, is given by:  

M 2 S ( K ) -  4~ F °° E 1 O V ( 
K4ke r co%o~ (K) = 3k~r  +-~-J o R2 dR g(R) R OR 1 

sin (KR)) 

KR + 

+ OR 2 R ~ 3 
1 (2KRo)S(~R)+(K2R2--2)sin(KR))~ (41) 
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This integral is rather sensitive to the values of g(R) around R ---- a and the 
accuracy of the fourth moment is accordingly lower, especially when we 
compare the values at two temperatures, g(R) being strongly temperature 
dependent in that  range of r values (We still think it better to use the ex- 
perimental g(R) rather than one of the various theoretical values proposed 
up to now). 
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The results are shown in figures 2 and 3. The second moment  gives us a 
first indication on the width of the distribution function, and the ratio 

co4/3[t0212 (equal to uni ty for a Gaussian distribution) is a direct test for the 
perfect gas model, which predicts 

1 [-. M 
K [_ 2~-~BT~ e x p (  M¢°2 ) (42) P~(o~)per~.~ -- 

2K2kBT 

(recoil of the atoms being always neglected). 
Here again, we find different behaviours for the distribution function, 

depending on the values of the parameters. 
1) - For Ka ~ 2, the perfect gas model is satisfactory. This is essentially 

the situation encountered by P e l a h ,  W h i t t e m o r e  and M a c R e y n o l d s  a) 
in their experiments on liquid lead, with neutrons of short wave length 
(,-~ 1A) and large scattering angles. In such a situation, the line width is 
expected to vary as T~. 

m 

l w~.coh 
[ t'o?'coh] 2 
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5 

4. 
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2 

T= 84; 4 °K 
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-I-:126,7OK 

t 
1 z 3 

1 °' 
- ! . - : .  

~- 5 6 7 a 8 g 

Fig. 3. 

2) - For intermediate values o/K, the moments undergo strong oscillating 
variations. The major phenomenon is the following: when the value of K 

corresponds to one of the diffraction peaks in the X ray pattern, oJ2coh 

becomes small and oJ¢coh/3[CO2coh]2 becomes large. This means that  for such 
K values the distribution function is narrow and the shape is closer to a 
Lorentzian than to a Gaussian. 
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Unfortunately we cannot here supplement our mpments calculation by  
a detailed picture of correlation functions; this would involve approxi- 
mations more difficult to justify than in the incoherent case. For a numerical 
s tudy of halfwidths, and "intermediate" or large values of K we propose the 
following empirical procedure: define a frequency ,Q(K) by  the relation 

a~4coh = o~2co~ [3cO2co~ + $22] 

This is a generalisation of the earlier introduced/20 (and indeed ~(oo) = ~20). 

Substi tute [aP'coh] ~- to K(kBT/M)  ~- in the halfwidth plot (fig. I) and ~9(K) to ~2o. 
Comparison with other models suggests that  the resulting Aco/~ should be 
a good first approximation to the true values. Results of this approximation 
for Argon are shown on figure 4. 

# A ~feV) 

i 

2.16~ T i 
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/ 
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T:126,7 K I / / 
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Fig. 4. 
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3) - For  smal l  ~c valu, es the moments have not been plotted in fig. 2 
and 3 because of experimental inaccuracies in S(K). This region is essentially 
the same as the one covered by  optical experiments. It  is a difficult region 
for neutron scattering because the intensities are small (except near the critical 
point). On the other hand, it is a comfortable region for the theoretical 
physicist, because macroscopic considerations may be applied to these 
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long wave lengths and long time scale phenomena. From experiment and 
from a well known analysis by  L a n d a u ,  P l a c z e c k  and Gross  19) one 
knows that  the distribution function consists of three lines: one central hne 
(co = 0) which is important mainly near the critical point, and two phonon 
lines (co = 4- cK) on both sides (Brillouin doublet). In our approximation 
(neglecting recoil and quantum effects) both phonon lines have. the same 
intensity ½11. The ratio I1]Io of the intensities in Brillouin doublet to the 
intensity in the central line many be deduced from our equations for the 
second moment. 

K 2 kBT 
- -  I i  c%c 2 - -  (43) ~ 2 c o  h - -  

11 + Io MS(K) 

The low K limit of S(K) is related to the isothermal compressibility (gp/9n)T 
by a well known relation 

lim~_.0S(K ) = kBT(~n/~p)T (44) 

The sound velocity c is also known through the adiabatic compressibility 

c 2 = (l/M)(~p/an),. (45) 
We then get: 

I1 ( o p )  / ( o p )  
I o T a 1 -  T , (46) 

This is precisely the value calculated by Gross  19) using a thermodynamic 
argument. In spite of this agreement we believe that  a detailed test of the 
three line model by computation of the moments should take into account 
damping effects. These effects might be independently estimated by means 
of macroscopic equations for heat flow, mass flow and mechanical motion. 
Such a calculation has been undertaken by B u t t e r w o r t h and M a r s h a 11 2o) 
(We disagree, however, with their assumptions on the existence of trans- 
verse vibrations). 

To conclude our remarks we may say that  neutron experiments on 
coherent scatterers in that  range of small ~ values would essentially lead 
to a determination of the sound velocity, dispersion and attenuation. A 
study of the central line width would also provide a measurement of a heat 
transfer coefficient is). 

5). Conclusions. The most important fact is that  the behaviour of the 
inelastic scattering essentially depends on the value of the momentum 
transfer 

1) - for large K values the perfect gas model is applicable both for coherent 
and incoherent scattering. 
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2) - for intermediate K values and coherent scattering correlation effects 
between neighbouring atoms are important and often result in a strong 
narrowing of the distribution function. 

3) - for small K values the results are fundamentally different depending 
on whether the scattering is coherent (three lines, which reduce to the 
Brillouin doublet for temperatures well below To) or incoherent (one single 
Lorentzian line). 

I t  is easier to make complete experimental investigation over the whole 
range of K values with a crystal spectrometer equipment than with a velocity 
selector: in the latter case wave lengths are longer ( ~  4A) and even at large 
angles the K values do not usually exceed the "intermediate" range. 

We now turn to some remarks on more general situations: 
1 ) - diatomic l iquids  - The formulas for the 'moments are heavier, and also 

interaction potentials are poorly known. We may however derive some 
simple, approximate results for the second moment. 

For incoherent scattering, we still have" 

f r K ( w  ) do) = 1 (47) 

O~hnc (K) = ~2 < idx/dtl2> (48) 

But  this average square velocity is not simply equal to k B T / M  (where M 
is the atomic mass). Also for coherent scattering, putting again 

(qKq_~> = N S ( ~ )  (49) 

(where N is the number of atoms) we may write f p~(co) d c o =  S(K) and 

K 2 cLxi dx j  
co2--'--coh - -  - -  X i j  ( - - - e  i~'x'' ) (50) 

NS(K)  dt dt 

Here, in contrast with the monoatomic case, there exist velocity correlations 
between different atoms. 

We still expect that  these correlations are small, except for atoms be- 
longing to the same molecule. These velocity correlations inside one molecule 
should be very nearly the same as in a perfect diatomic gas, where they may 
be computed by standard techniques of classical mechanics. 

This leads to the following values 

o)2,nc (K) ---- (5/6) ~ 2 k B T / M  (51) 

O)2coh (K) - -  MS(K)  + - ~ -  (2~ cos ~ + (~2 _ 2) sin ~) (52) 

where ~ = Kd and d is the atomic distance in the molecule. The derivation 
of (51) and (52) neglects vibrational modulations of d (which lead to small 
and easily separated corrections for thermal neutrons). Also the case of 
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nuclear spin correlations between the two atoms in the molecule (as in 
hydrogen) should be treated separately. 

2) - A m o r p h o u s  solids - Kinetics of amorphous media are very poorly 
known, except for very long wave length phenomena. The method of mo- 
ments may  prove very useful here: assume for instance that  there are 
different atomic species, each atom being associated with a coherent 
scattering amplitude ai (depending on the atomic species to which (i) belongs 
We then have, for coherent scattering: 

d2aco~ k l  1 
a~ 

f 

J dt e -"~t ~Eli aial ( e ~x'(°) e i~x'(t) ) (53) 
d~  dco k0 2n 

Formulas for the moments of order 0,2 and 4 may easily be derived: they 
are simple generalisations of equations (10), (17) and (22). The pair density 
functions and rigidity coefficients that  come in might be directly estimated 
from simple models of the amorphous phase. 

3) - Reactor technology - The formulas which have been developed up to 
now are obviously not suitable for thermalisation problems, since we 
neglected the moments of odd order in the distribution function. However, 
the information collected suggests that  for incident neutron wave lengths 
shorter than say one half the average intermolecular distance, a good 
starting approximation should be provided by  the perfect gas model for 
the corresponding (mono or polyatomic) molecules. 

This statement should of course be refined by  a more detailed analysis, 
especially for associated liquids such as water. 
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