

Physics with Neutrons I

Lecture: Prof. Dr. Winfried Petry **Exercises:** Dr. Zach Evenson

email: zachary.evenson@frm2.tum.de

WS 2017/2018

MLZ is a cooperation between

Literature

Textbooks - all available in the TUM Physics Department Library

- G. L. Squires Introduction to the Theory of Thermal Neutron Scattering, Cambridge University Press, Cambridge (1978), also Dover Publications, New York (1996).
- S. W. Lovesey

 Theory of Neutron Scattering from Condensed Matter I, II,
 Oxford University Press, Oxford (1984).
- A. Furrer, J. Mesot, T. Strässle **Neutron Scattering in Condensed Matter Physics**, World Scientific, Singapore (2009).

Literature

Internet resources

Roger Pynn

Neutron scattering: A primer, Los Alamos Neutron Science Center

https://www.ncnr.nist.gov/summerschool/ss16/pdf/ NeutronScatteringPrimer.pdf

Michael Leitner (TUM)

Lecture script: Physics with neutrons

https://homepage.univie.ac.at/michael.leitner/skriptum_neutronphysics.pdf

Exercises

Exercises begin on Friday, 17.11.17

Meeting place: Room C.3202 (Container Building)

Meeting time: 12 - 14 Uhr

Student Seminar

Methods and Experiments in Neutron Scattering Organized by Sebastian Mühlbauer and Christoph Morkel

Preliminary meeting on **25.10.17 at 9:15 Uhr** Meet in **Room 2224**

Further inquiries: Sebastian.Muehlbauer@frm2.tum.de

Employment opportunity!

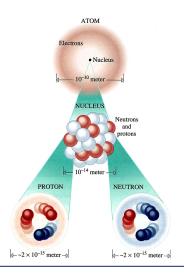
Work student on the time-of-flight-spectrometer TOFTOF Up to 9 hr/week

We offer:

- Challenging and engaging working environment
- Direct access to state-of-the-art neutron scattering instruments
- Opportunity to develop professional working skills
- Possibility for Master's thesis

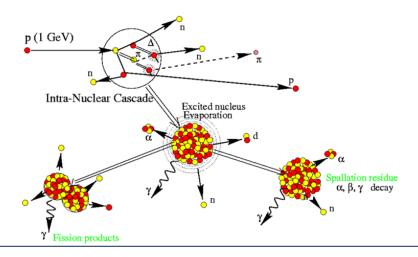
You have:

- Background in programming (C and/or Python)
- Interest in neutron scattering in solid-state materials


Are you interested?
Zachary.Evenson@frm2.tum.de

The atomic nucleus

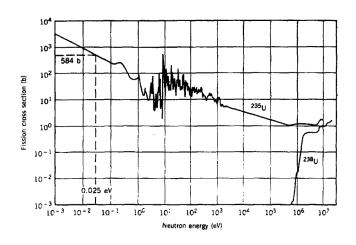
Summary: Characteristics of different neutron sources


Reaction	Neutron rate	Heat deposition [MeV/n]	Source strength [n/s]
Spontaneous fission ²⁵² Cf	3.75 n/fission	100	2 · 10 ¹² g-1
⁹ Be (d,n) (15 meV)	1.2 · 10 ⁻² n/d	1200	8 · 10 ¹³ mA ⁻¹
³ H(d,n) (0.2 MeV)	8 · 10 ⁻⁵ n/d	2500	5 · 10 ¹¹ mA ⁻¹
Photo production W(e,n)(35 MeV)	1.7 · 10 ⁻² n/e ⁻	2000	4 · 1014
spallation 1.33 GeV p on Hg	28 n/p	20	1018
²³⁵ U fission	~1 n/fission	200	2 · 10 ¹⁸

Spallation

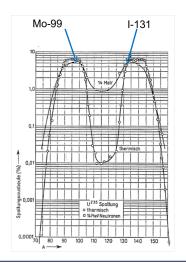
Liquid Hg target

Spallation Neutron Source (SNS), Oak Ridge, USA

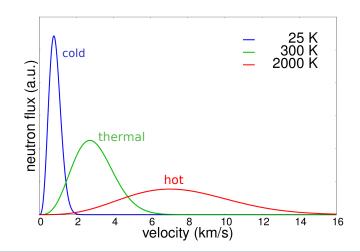


Probability for fission

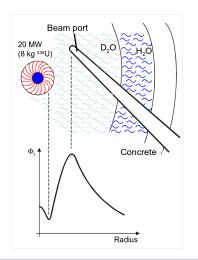
Neutron-induced fission cross-sections [Krane, Introductory Nuclear Physics]



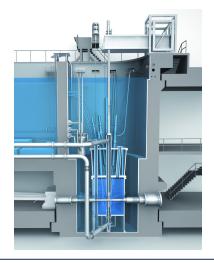
Mass distribution of fission products from ²³⁵U



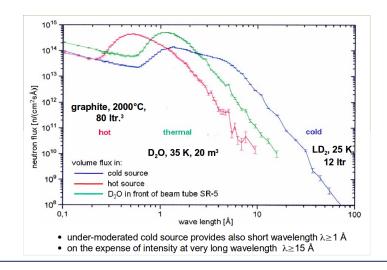
Maxwellian velocity distribution of moderated neutrons



Principle of a high-performance fission neutron source



FRM-II core cross-section



Spectral distribution of neutrons FRM-II

