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Abstract

The techniques of neutron diffraction and x-ray diffraction, as applied to structural studies
of liquids and glasses, are reviewed. Emphasis is placed on the explanation and discussion
of the experimental techniques and data analysis methods, as illustrated by the results of
representative experiments. The disordered, isotropic nature of the structure of liquids
and glasses leads to special considerations and certain difficulties when neutron and x-ray
diffraction techniques are applied, especially when used in combination on the same system.
Recent progress in experimental technique, as well as in data analysis and computer simulation,
has motivated the writing of this review.
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1. Introduction

Given the wide range and long history of neutron and x-ray diffraction techniques used to
study liquids and glasses, the scope of this review needs to be defined. We do not attempt to
give a complete summary of the systems studied to date, or to cite all the major participants in
the history of this field. We are mainly concerned with providing a rather pedagogic summary
of the diffraction techniques as illustrated by the results of representative experiments, along
the lines of previous publications by, for example, Barnes et al (2003) and Suck et al (1993).

Two early reviews of diffraction studies of liquids were written by Kruh (1962) for x-ray
diffraction and by Furukawa (1962) for neutron, x-ray and electron diffraction, where both
reviews included some discussion of the experimental techniques and data analysis methods.
A thorough review of neutron diffraction studies on molecular liquids, molten salts and
both aqueous and non-aqueous solutions has been given by Neilson and Adya (1996), and
Neuefeind (2002) presents a brief review of high-energy x-ray diffraction studies of liquids.
The application of x-ray and neutron diffraction techniques to glasses and the data analysis
methods have been discussed by Wright (1996, 1994, 1993, 1974) and others. A recent book
deals with applications of x-ray and neutron scattering methods to polymer science (Roe 2000).
The dynamical aspects of disordered materials, including liquids and glasses, have recently
been reviewed by Price et al (2003). We choose to cite such reviews rather than repeat too
much of what has already been published.

The special physical properties of liquids (Egelstaff 1992, Hansen and McDonald 1990,
Cusack 1987, Temperley et al 1968) and of glasses (Boolchand 2000, Feltz 1993, Elliott 1990,
Cusack 1987, Zallen 1983) are largely due to these systems being disordered, isotropic and gen-
erally homogeneous. The microscopic structure of liquids and glasses is generally described
in terms of probabilistic atomic distribution functions—see, for example, Ziman (1979) for a
general discussion of the structure and dynamics of disordered systems. In this review, we con-
sider a liquid to be a fluid of solid-like density, where by definition the atoms are free to diffuse
throughout the medium and do not remain at their initial positions. Occasionally we will treat
the dilute limit of such a system, i.e. a fluid of gas-like density. We also assume the ergodic
principle for liquids (and other fluids). In our case this means that an average of ‘snapshots’ of
local structures across a large sample of the liquid (obtained experimentally) is equivalent to the
time average of any local structure. Here ‘local structure’ refers to that within the coherence
volume of an incident quantum that diffracts in the sample (discussed in section 2.1). We
will consider a glass to be an amorphous material made from a liquid via sufficiently rapid
cooling so as to prevent any crystallization (Zallen 1983, Zachariasen 1932), where techniques
of production include conventional bulk quenching, melt-spinning and splat-cooling.

By ‘diffraction’ we mean scattering of incident quanta by the sample and detection of all
scattered quanta regardless of any energy exchange with particles undergoing atomic motion in
the sample. Standard general references are the books by Bacon (1975) for neutron diffraction
and Warren (1990) for x-ray diffraction, as well as Als-Nielsen and McMorrow (2001) for the
case of x-ray synchrotron radiation. See also the HERCULES series on large-scale facilities,
which contains chapters on the application of neutron and synchrotron radiation to condensed
matter studies (Baruchel et al 1993, 1994). The diffusive and vibrational motions of the atoms
in a liquid or a glass can be measured by both inelastic neutron scattering (INS) and inelastic
x-ray scattering (IXS), but a discussion of these methods is beyond the scope of this review.
The reader is referred to Hempelmann (2000), Zabel (1993), Richter et al (1989) and Beé
(1988) for INS and to Chen and Kotlarchyk (1997), Burkel (1991) and Schulke (1991) for IXS.

Useful compilations of information and data for neutron and x-ray scattering techniques
are given in the Neutron Data Booklet (Dianoux and Lander 2002) and the X-ray Data Booklet
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(Thompson and Vaughan 2001). A thorough compilation of information on neutron, x-ray and
electron diffraction techniques, including data correction factors as well as methods for the
production and detection of the quanta, can be found in the International Crystallography
Tables (volume C) edited by Prince (2004 3rd edn) and by Wilson and Prince (1999
2nd edn).

For a monatomic system, a single probabilistic function called the pair-distribution
function is used to describe the spatial correlations between pairs of atoms. In a polyatomic
liquid or glass, this concept is extended such that the probability of finding one type of atom
(e.g. H) at a given distance from another (e.g. O) is related to the partial pair-distribution
function for those chemical species in that system. In all materials the existence of chemical
bonding will give rise to short-range and intermediate-range structural order but not to long-
range periodic order as in the case of crystals (see, e.g. Salmon et al (2005)). The determination
of this order in terms of partial pair-distribution functions is therefore fundamental to an
understanding of many physical properties of liquids and glasses.

The Fourier transform of a (partial) pair-distribution function leads to a reciprocal space
function known as the (partial) structure factor. Neutron and x-ray diffraction techniques
measure the differential scattering cross-section that is essentially proportional to the structure
factor of a monatomic system, or to a weighted sum of partial structure factors for a polyatomic
system. From a series of diffraction experiments on a given polyatomic system for which the
scattering power of the atoms is varied (e.g. by isotopic substitution in neutron diffraction), it
is often possible to determine, with accuracy, its partial structure factors and thereby its partial
pair-distribution functions.

The need for high accuracy and absolute normalization of the measured intensities makes
diffraction measurements on liquids and glasses particularly challenging, and the data analysis
generally involves a variety of delicate corrections and careful interpretation. Specialized
instruments include the D4c (Fischer et al 2002), 7C2 (Ambroise et al 1984) and SLAD
(Wannberg et al 1997) reactor–source neutron diffractometers, the SANDALS (Soper 1989),
GEM (Hannon 2005), LAD (Howells and Hannon 1999), HIT-II (Fukunaga et al 1993) and
GLAD (Ellison et al 1993) pulsed-source neutron diffractometers, the BW5 (Bouchard et al
1998), BL04B2 (Kohara et al 2001) and 11-ID-C (Rütt et al 2001) high-energy x-ray beamlines
and the anomalous scattering x-ray beamline ID1 (Lequien et al 1995). As neutrons and x-rays
have fundamentally different interactions with matter, diffraction experiments made using
these methods can provide complementary information and, in certain cases, considerable
advantage can be had in the determination of partial structure factors by combining the two
techniques. However, the absolute accuracy needed for the correct combination of the two
types of diffraction data makes the data analysis even more complicated.

An alternative and complementary approach to such partial structure factor (and partial
pair-distribution function) determination is that of reverse Monte Carlo (RMC) modelling
(Keen et al 2005a, McGreevy 2001, 1995, McGreevy and Pusztai 1988), whose range of
application continues to increase. The RMC method refines iteratively a three-dimensional
structural model of the system that is consistent with one or more data sets from structure
measurements, be they neutron diffraction, x-ray diffraction, EXAFS (extended x-ray
absorption fine structure) spectroscopy, NMR (nuclear magnetic resonance), etc. There is no
interatomic or intermolecular potential involved in RMC modelling, which can be an advantage
in many cases.

The method of empirical potential structural refinement (EPSR) is similar in concept to
RMC but refines self-consistently a potential as well as a three-dimensional model for the
system (Soper 2001, 1998, 1996a). The EPSR method has had a productive application to
molecular liquids and ionic solutions.



Neutron and x-ray diffraction studies of liquids and glasses 237

The development of techniques for extreme thermodynamic conditions has opened up
new areas of research in x-ray and neutron diffraction studies of liquids and glasses. As
high-temperature studies are oftentimes limited by chemical reaction between the sample
and container, requiring special container materials (e.g. Simonet et al (1998)), the advent
of containerless techniques such as aerodynamic levitation has led to sample temperatures
exceeding 2000 ˚C for liquids in x-ray (Hennet et al 2002, Krishnan and Price 2000, Krishnan
et al 1997, Landron et al 1997) and neutron (Landron et al 2003, 2001, 2000) diffraction
experiments. For electrically conducting liquid samples at high-temperature, the technique
of electromagnetic levitation has been used in x-ray (e.g. Kimura et al (2001)) and neutron
(e.g. Schenk et al (2002)) diffraction studies, as well as in EXAFS work (e.g. Egry et al (1996)).
Both levitation techniques have the added advantage of permitting significant undercooling of
the liquid sample.

Due to relatively low attenuation effects, conventional (i.e. bulky) high-pressure cells can
be used in neutron diffraction (e.g. Pfleiderer et al (2000)) and high-energy x-ray diffraction
(e.g. Heusel et al (2002)) experiments, although the cell wall material is generally chosen to
have small coherent scattering. New advances in very high-pressure instrumentation, including
large volume presses such as the Paris–Edinburgh cell adapted to neutron diffraction (e.g. Klotz
et al (2005, 2002)) and synchrotron x-ray diffraction (e.g. Mezouar et al (1999)), have extended
the pressure range to tens of giga-pascals (GPa). Such ‘anvil’-type cells have been used for
the study of liquid samples under high-pressure and high-temperature, e.g. in the high-energy
synchrotron x-ray diffraction work of Katayama and Tsuji (2003), Crichton et al (2001) and
Katayama et al (2000). A different type of cell has been developed by Tamura et al (1998) for
energy-dispersive synchrotron x-ray diffraction and is suitable for liquids at high-temperature
and high-pressure (see also Hosokawa and Tamura (2004)). Diamond anvil cells have also
been used to study liquids at high pressures and temperatures (Falconi et al 2005, Gregoryanz
et al 2005).

We begin this review by briefly considering the pertinent theoretical background for
diffraction by liquids and glasses, distinguishing the cases for monatomic and polyatomic
systems. For clarity we will limit the early discussion to scattering lengths that are independent
of wavevector transfer and incident energy, sufficient for most cases of neutron diffraction,
and later generalize the discussion to include these dependences for the more complex case
of x-ray diffraction. This mode of presentation allows a concise and clear notation for the
mathematics of the theoretical background while maintaining a good measure of generality.

Separate sections then discuss the diffraction techniques and their data treatment, with
emphasis placed on the methods used for determining the partial structure factors of polyatomic
liquids and glasses: isotopic substitution in neutron diffraction, anomalous dispersion in x-ray
diffraction and the combination of neutron and x-ray diffraction techniques. The discussion of
neutron diffraction techniques is most pertinent to the case of a monochromatic incident beam
(i.e. reactor source), but elements particular to pulsed-source diffraction are also discussed
and/or cited.

Finally, we feel that the growing importance and utility of data modelling and simulation
methods, also noted by Price et al (2003) for dynamical studies, merit their discussion in a
separate section, which is followed by the conclusions section.

2. Basic theoretical background for diffraction by liquids and glasses

The formalism reviewed in this section holds for both neutron and x-ray diffraction and starts
with a system that comprises point-like scattering centres. The results thus obtained can then be
readily generalized to the case of extended scattering centres, or atoms, by superimposing these
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Figure 1. Schematic of a typical diffraction experiment from a continuous source of neutrons or
x-rays. The scattering triangle of wavevectors is shown at the top.

centres on each and every point. Similar unified formalisms have been presented elsewhere (e.g.
Champeney (1973), Leadbetter and Wright (1972d)). For more fundamental descriptions of
the scattering processes involved for liquids and glasses the reader is referred to Lovesey (1984
vol 1 chapter 5), Squires (1978 chapter 5), Bacon (1975 chapter 16) or Sjölander (1965) for
neutrons and to Guinier (1994 chapter 3), Warren (1990 chapter 10) or James (1962 chapter 10)
for x-rays. A general quantum mechanical treatment of scattering theory can be found in Schiff
(1968 chapters 5 and 9).

2.1. Differential scattering cross-section for diffraction

Consider a collimated beam of quanta (neutrons or x-rays) incident on a sample composed of
one or more point-like scattering centres, as depicted in figure 1. Let us first treat the case of
a monochromatic incident beam where all quanta have the same incident wavelength, λo, and
let us represent the wavepacket of each incident quantum by a simple plane wave:

�inc = ψinc ei[ko·r−ωot] ≡ ψo eiko·r, (2.1)

where ψinc is the amplitude, ko is the incident wavevector of magnitude ko = 2π/λo and r is
the position of the quantum. For neutrons, the incident energy h̄ωo = h̄2k2

o/2mn, where mn is
the mass of the neutron, and for x-rays h̄ωo = h̄cko, where c is the speed of light in vacuum.
For simplicity, we will assume that the incident energy, h̄ωo, of a quantum is much larger than
any energy exchange, h̄ω, that occurs on scattering from the sample. Also, if λo is very much
larger than the diameter of the scattering centre, the scattering will be isotropic (i.e. S-wave
scattering). Then, for a single scattering centre i at the origin of coordinates, the wavepacket
of the scattered quantum is represented by a spherical wave:

�scatt,1 = −ψobi

R
eikf R, (2.2)

where R is the distance from the scattering centre and kf is the magnitude of the final
wavevector kf . Since we are assuming h̄ωo � h̄ω = h̄ωo − h̄ωf , where h̄ωf is the final
energy of the quantum, we have h̄ωf ≈ h̄ωo which means that we have been able to factor out
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a common time dependence, exp(−iωot), from the incident and scattered waves and incorporate
it into the ψo term. In addition, we have kf ≈ ko for both x-rays and neutrons. The constant bi

is the scattering length for scattering centre i, has dimensions of length, is in general complex-
valued and its magnitude and sign depend on the properties of the interaction between the
quantum and scattering centre. The leading minus sign in equation (2.2) results from the
convention in neutron scattering that a positive scattering length corresponds to a repulsive
scattering potential (e.g. Squires (1978) p 8), and in the case of x-ray scattering it indicates
that the radiated electric field is phase-shifted on scattering by π with respect to the incident
field (e.g. Als-Nielsen and McMorrow (2001) p 7). Note that we are ignoring for the moment
any polarization of the quantum or scattering centre.

If the scattering centre i is not at the origin but at a position ri then, provided R � ri , an
additional phase shift of q · ri can be deduced where q = ko −kf is called the scattering vector.
Hence, for a sample comprising N point-like scattering centres i, each having a scattering
length bi ,

�scatt,N = −ψo

R
eikf R

N∑
i=1

bie
iq·ri (2.3)

at a distant point defined by R, taken to be parallel to kf , where we place a detector of area
dS � R2 subtending a small solid angle d� = dS/R2 with respect to the sample. The upper
part of figure 1 shows the so-called scattering triangle, which relates the vectors ko, kf and q
to the scattering angle 2θ of kf with respect to ko.

We define the differential scattering cross-section for diffraction by

dσ

d�

def= number of quanta scattered per second towards the detector into d�

	 d�
, (2.4)

where the flux 	 is the number of incident quanta per second per unit cross-sectional area of
the incident beam. For typical units of cm−2 s−1 for flux and steradian (str) for d� the units of
dσ/d� become cm2/str or, more conveniently, barn/str where 1 barn = 10−24 cm2. By choosing
a suitable normalization of the wavefunctions (e.g. Mott (1962)), the incident flux is given by
	 = vo|�inc|2 = voψ

2
o , where vo is the group velocity of the incident quanta, and the flux of

scattered particles across area dS, which defines the numerator of equation (2.4), is given by
vf |�scatt|2 dS where vf is the final velocity. For x-ray diffraction vo = vf = c and for neutron
diffraction vf = h̄kf /mn ≈ vo since we have assumed h̄ωf ≈ h̄ωo such that kf ≈ ko. Hence
the velocity factors will cancel, and we can write for a single scattering centre at the origin:

dσ

d�

∣∣∣∣
1

= |�scatt,1|2 dS

|�inc|2 d�
= (ψ2

o |bi |2/R2)(R2 d�)

ψ2
o d�

= |bi |2 or b2
i , (2.5)

giving isotropic scattering as expected. Note that here, as elsewhere in this review, b2 rep-
resents the norm-squared of a scattering length. For the sample of N scattering centres, the
expression for the differential scattering cross-section becomes

dσ

d�
(q) =

〈∣∣∣∣
N∑

i=1

bieiq·ri

∣∣∣∣
2〉

=
〈 N∑

i,j

bib
∗
j eiq·rij

〉
, (2.6)

where the vector rij = ri − rj gives the relative position of scattering centres i and j .
The averages in equation (2.6) require some explanation. Firstly, the atoms in a real

sample continually undergo thermal displacement over the course of a diffraction experiment.
The positions of the scattering centres are therefore, not, fixed, and the brackets 〈 〉 denote a
thermal average of these positions corresponding to the different states of the scattering system
(i.e. the sample) that are accessible at a given temperature, as weighted by a Boltzmann factor
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and appropriate degeneracy factors (e.g. Lovesey (1984) vol 1 p 9). Secondly, we have to
consider the nature of the incident quantum and its interaction with the scattering centres,
taking into account the distribution of bi values over the scattering centre positions.

For definiteness, consider the case of a large sample (e.g. N ≈ NA where NA is the
Avogadro constant) comprising a single element, or chemical species, having Z electrons. In
x-ray diffraction, the photons scatter from the atomic electron density, and each scattering
centre is identified with an ‘atomic position’ or ‘atomic site’ insofar as the atomic electron
density is roughly centred on the nucleus. Since the atomic scattering length at a given incident
energy depends only on Z, the horizontal bars in equation (2.6) can be omitted; there is a unique
scattering length for each possible site. In neutron diffraction, the neutrons will scatter from the
nuclei and also, for magnetic atoms, from unpaired electrons. For simplicity, we will consider
only the former and identify the scattering centres with the nuclei. Then the scattering length
(for a given incident energy) at a site depends on the isotopic mass of the nucleus that occupies
that site and also on the relative orientation of the isotope’s nuclear spin state with respect
to the incident neutron’s spin state. The horizontal bars in equation (2.6) then represent an
average over an ensemble of samples of identical structure and isotopic composition where,
for each member of the ensemble, the neutron scattering lengths are distributed differently
over the sites (cf Squires (1978) p 21). In making this average, it is usual to assume that
there is no correlation (a) between nuclear spin state and site, (b) between the nuclear spins
themselves and (c) between isotopic mass and site. In the case of a sample comprising several
chemical species, the neutron scattering lengths for each chemical species must be distributed
appropriately amongst the available sites for that chemical species.

In neutron diffraction, the bi in equations (2.2)–(2.6) represent so-called ‘bound’ scattering
lengths. However, this nomenclature does not mean that the nuclei are perfectly fixed (see
the appendix of Sears (1978) for a discussion). Rather, the use of bound values for neutron
scattering lengths within the Fermi pseudo-potential formalism ensures that if a single nucleus
is sufficiently well localized with respect to its chemical environment, the required result of
isotropic scattering (see equation (2.2)) is obtained (e.g. Lovesey (1984) vol 1 p 11). From
equation (2.5) it follows, for a system comprising a single bound nucleus at the origin, that
the total scattering cross-section is σscatt = 4πb2

i (again ignoring polarization effects). By
comparison, for an isolated ‘free’ nucleus as in the case of a perfect gas, this cross-section
becomes σ free

scatt = 4πa2
i where ai = biMi/(mn + Mi) is called the free scattering length and

Mi is the nuclear mass (e.g. Bacon (1975) p 32). At thermal neutron energies, the imaginary
part of bi (which is related to the absorption cross-section) is generally very small because
absorption resonances are rare at diffraction wavelengths—notable exceptions occur for 103Rh,
113Cd, 149Sm, 151Eu, 155Gd, 157Gd, 164Dy, 167Er, 176Lu, 180Ta, 191Ir and others (Sinclair 1993,
Mughabghab et al 1981). It should be noted that the real part of bi also varies strongly near
these resonances as a function of the incident neutron energy—Cossy et al (1989) outline a
procedure for calculating the real and imaginary parts of energy-dependent neutron scattering
lengths and apply it to the case of 164Dy.

In x-ray diffraction, the bi refer to Rayleigh–Thomson scattering lengths for photons
that scatter from electrons in bound atomic orbitals (see e.g. Maslen et al (1995) p 476).
As the x-rays scatter not from the point-like atomic nuclei but from spatially extended
electron density distributions (i.e. orbitals and bonds), each scattering centre is associated
with a scattering length density distribution that is described by an r-dependent function.
The finite extent of this distribution in real-space results in a q-dependent modulation of
the x-ray scattering length in reciprocal space, in other words, an atomic form factor (see
section 4.1). For x-ray diffraction, absorption effects are in general considerably stronger
than for off-resonance neutron diffraction, i.e. the imaginary part of bi cannot be ignored, and
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the energy dependence of the real part should always be taken into account. A q-dependent
form factor also occurs in the case of neutron scattering from magnetic atoms. It is therefore
necessary to take this scattering into account when analysing the diffraction patterns measured
for magnetic materials, e.g. when there is paramagnetic scattering from rare-earth ions (Wasse
and Salmon 1999).

In deriving equation (2.6) it was not necessary to assume elastic scattering events, i.e.
that there was no energy exchange between the incident quantum and sample. Instead, we
made the so-called static approximation in which the energy exchange, h̄ω, is considered to be
very small compared with the incident energy h̄ωo. In order to appreciate the validity of this
approximation it is important to note that the scattered quanta in a diffraction experiment are
counted by the detector regardless of their energy exchanges with the sample. The measurement
thus amounts to an integration of the double differential scattering cross-section, d2σ/d� dE,
at constant detector angle 2θ and over all possible energy exchanges:

dσ

d�

∣∣∣∣
meas

=
∫ +h̄ωo

−∞
d(h̄ω)

d2σ

d� dE
ε(Ef ), (2.7)

where E = h̄ω = Eo −Ef represents the energy loss of the quanta, all having incident energy
Eo = h̄ωo. The efficiency ε(Ef ) of the detector is in general a function of the final energy Ef .
For x-rays we can write h̄ω = h̄cko − h̄ckf and for neutrons h̄ω = (h̄2/2mn)(k

2
o − k2

f ).
Within the static approximation, Eo = h̄ωo � h̄ω so that the upper limit of the integral in
equation (2.7) can be extended to infinity. It can also be shown that the integration over h̄ω

then occurs at constant q (see e.g. Squires (1978) p 78, Lomer and Low (1965) p 12). Then
equation (2.7) reduces to the expression

dσ

d�

∣∣∣∣
sa

meas

= ε(Eo)

∫ +∞

−∞
d(h̄ω)

d2σ

d� dE

∣∣∣∣
q

= ε(Eo)
dσ

d�
(q), (2.8)

where we have assumed that the detector efficiency is insensitive to any (small) energy transfer.
The static approximation therefore leads to a differential scattering cross-section given by
equation (2.6), and correction terms, due to the inelastic nature of scattering events, may apply.

In practice, a sample at a given temperature will have a spectrum of possible thermal
excitations and therefore, in general, an energy exchange of maximum possible magnitude
h̄ωmax with the incident quantum. The static approximation will therefore be valid if
Eo � h̄ωmax. We can also examine this condition in terms of timescales. The energy h̄ωmax

leads to a minimum characteristic time of atomic motion τmin ∼ ω−1
max, corresponding to a

period of atomic vibration in a solid or a relaxation time in a liquid (Squires (1978) pp 81–2).
The quantum’s incident energy Eo = h̄ωo leads to a characteristic time for diffraction, often
called the ‘snapshot’ time τsnapshot ∼ ω−1

o (a/λo), that corresponds to the timescale for an
incident quantum (x-ray or neutron) to travel one interatomic distance a, which in diffraction
experiments is generally of the order of the incident quantum wavelength λo. The static
approximation is valid when h̄ωo � h̄ωmax and therefore when τsnapshot � τmin. In other words,
the structure of the sample is relatively static during the time the quantum wavepacket takes to
pass from one atom to the next, and so the scattering event results in a relatively instantaneous
‘snapshot’ of the local structure, validating the use of time-independent positions ri for the
scattering centres in equation (2.6) (see also Turchin (1965) p 105).

The minimum characteristic time of atomic motion depends on the composition and
temperature of the sample but typically τmin ∼ 10−13–10−12 s, corresponding to energies
of the order of several millielectronvolts. The incident energies of x-rays at atomic diffraction
wavelengths are sufficiently high (several kiloelectronvolts) such that the static approximation
is comfortably valid. For neutron diffraction, however, the lower incident energies commonly
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used (tens or a few hundred millielectronvolts) correspond to snapshot times in the range
10−15 s � τsnapshot � 10−13 s, generally only about 1 or 2 orders of magnitude smaller than
τmin (e.g. Squires (1978) pp 78–83). This incomplete validity of the static approximation
in the case of neutron scattering results in the need for inelasticity corrections (discussed in
section 3.1) to the differential scattering cross-section given by equation (2.8).

In an actual neutron or x-ray diffraction experiment, a complete diffraction pattern (or
diffractogram) is made by averaging the snapshots taken of the system by each of the incident
quanta, i.e. it is made from summing up the contributions to dσ/d� that arise from the scattered
intensity from all the coherence volumes in the sample (see, e.g. Sinha et al (1998) for
the case of x-ray diffraction). A coherence volume can be thought of as the ‘size’ of the
wavepacket of each quantum that diffracts somewhere in the sample and increases in size with
the collimation and monochromaticity of the beam (e.g. Rauch and Werner (2000) section 4.2.5,
Als-Nielsen and McMorrow (2001) section 1.5), i.e. it is dependent on the resolution function
of the diffractometer. Scattering centres that lie within a coherence volume will give rise
to interference effects, and the converse applies if the scattering centres do not satisfy this
condition. Hence, there is a cutoff function in real-space associated with the coherence
volumes and it follows, from the properties of Fourier transforms, that the measured intensity in
reciprocal-space will be represented by the differential scattering cross-section of equation (2.6)
or (2.8) after it has been convoluted with the resolution function of the diffractometer (Sinha
et al 1998). In the extreme case of a single coherence volume in the illuminated part of the
sample, we have diffraction-limited ‘speckle’ scattering (Sutton et al 1991)—such experiments
are now possible at synchrotron x-ray sources and can give information on, for example, the
dynamics of equilibrium critical fluctuations at the order–disorder transition in a binary alloy
(Brauer et al 1995). It is worthwhile noting that since an incident quantum interacts with
many scattering centres within its coherence volume, the centre-of-mass coordinates for the
scattering event are accurately represented by coordinates in the sample’s (i.e. laboratory’s)
frame of reference.

As already mentioned, the static approximation does not correspond to purely elastic
scattering where all the energy exchanges, h̄ω = 0. Elastic scattering relates to diffraction
from only the time-averaged atomic positions in the sample as can be appreciated from
consideration of the Heisenberg Uncertainty principle �E�t ∼ h̄ in quantum mechanics:
to equate exactly the incident and final energies of a scattered quantum an infinite timescale is
required for the scattering event (e.g. Turchin (1965) p 106). For a liquid, atoms do not have
well-defined equilibrium positions because of their diffusive motion, and the time-averaged
atomic density is therefore uniform. In consequence, there is no elastic scattering from a
liquid (Squires (1978) chapter 5). However, a given atom moving in a liquid will generally
have a well-defined local coordination environment produced by successive neighbours, and
this structure corresponds to the average of the instantaneous snapshots taken in a diffraction
measurement. Within the formalism of van Hove (1954) correlation functions, the time-
dependent pair-correlation function of the scattering system, G(r, t), is evaluated at t = ∞
in the case of elastic scattering and is evaluated at t = 0 in the static approximation (see,
e.g. Squires (1978) chapter 4). For a glass, the structure can be viewed in terms of the
thermal motion of atoms about time-independent mean positions. The instantaneous position
of an atom will therefore average in time to form a ‘thermal cloud’ about its mean position,
leading to Debye–Waller factors in the diffracted intensity. In the case of a glass, it is
possible to measure purely elastic scattering, and the coherent differential scattering cross-
sections for the static approximation and elastic scattering differ by terms that involve the
Debye–Waller factors of the chemical species (Wright and Sinclair 1985, Leadbetter and
Wright 1972d).
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Finally, it may be deduced from equation (2.4) that the intensity I (q) in counts-per-second
as measured by a detector of solid angle d� is given by

I (q) = 	
dσ

d�
(q) d�, (2.9)

where 	 is the incident flux on the sample, the differential scattering cross-section is given by
equation (2.6), and here we assume perfect efficiency of detection (ε(Ef ) = 1). Note that the
measured intensity is explicitly a function of only the scattering vector q which for a quantum
of incident wavelength λo is related to the scattering angle 2θ via

q = |q| = 2ko sin θ = 4π

λo

sin θ. (2.10)

This equation follows from the scattering triangle in figure 1 and is valid when kf = ko (elastic
scattering) or when kf ≈ ko (the static approximation). For a sample of overall isotropic
structure, such as a polycrystalline powder, glass or liquid, it is not necessary to specify the
azimuthal angle φ of the scattered quanta, as the diffraction pattern has conical symmetry
(Debye–Scherrer diffraction).

A diffractogram of a liquid or a glass can therefore be obtained by varying either 2θ or
λo or both. In the case of x-rays, energy-dispersive diffraction, wherein λo = hc/Eo is varied
at constant 2θ , is seldom used because of the complication of Eo-dependent cross-sections,
although it may be advantageous when the detector’s angular range is constrained by the sample
environment (e.g. a high-pressure cell). For neutrons, there is significant complementarity
between monochromatic angle-dispersive diffraction at reactor sources (fixed λo) and time-of-
flight techniques at pulsed sources (variable λo and 2θ ), especially concerning resolution effects
and inelasticity corrections. Some schematic comparisons between diffraction techniques at
reactor and pulsed sources are given by Windsor (1986), while Carpenter and Yelon (1986)
discuss the characteristics of the neutron sources themselves. Soper et al ((2000) appendix B)
define a ‘C-number’ for counting-rate comparisons of different neutron diffractometers, which
is a function of q and proportional to the intensity scattered from a standard vanadium sample.
For completeness, we mention that neutron diffractograms can also be obtained by measuring
the sample’s total cross-section as a function of incident energy (Sinclair and Wright 1983).

2.2. The case of a monatomic system

As discussed above, a monatomic sample (single atomic number Z) can have a distribution of
scattering lengths for neutron diffraction (e.g. Squires (1978) pp 21–4). Assuming that there
is no correlation between the scattering lengths and positions of different scattering centres in
the sample, we can consider two cases for each term in the summation of equation (2.6):

bib
∗
j = bib

∗
i = b2 i = j (same site),

bib
∗
j = bi b∗

j = b
2

i 
= j (different sites),
(2.11)

so that the differential scattering cross-section becomes

dσ

d�
(q) = b

2
〈 N∑
i,j 
=i

eiq·rij

〉
+ Nb2

= b
2
〈 N∑

i,j

eiq·rij

〉
+ N(b2 − b

2
),

(2.12)

where again the brackets 〈 〉 denote a thermal average. The first line of equation (2.12) separates
the contributions to dσ/d� into a ‘distinct’ term (the diffraction interference from different



244 H E Fischer et al

atomic sites) and a ‘self’ term (the isotropic diffraction from individual atomic sites). By
defining the interference function H(q) as

H(q)
def= 1

N

〈 N∑
i,j 
=i

eiq·rij

〉
, (2.13)

which is dimensionless and for a disordered structure converges to 0 as q → ∞, we can write
the differential scattering cross-section per atom as

1

N

[
dσ

d�
(q)

]
= 1

N

[
dσ

d�
(q)

]distinct

+
1

N

[
dσ

d�
(q)

]self

= b
2
H(q) + b2,

(2.14)

showing explicitly the dependence on q only. Note that we are assuming the atoms of mass M

to be distinguishable so that the system can be treated classically, i.e. that their thermal de
Broglie wavelength

� =
√

2πh̄2

kBT M
, (2.15)

is much smaller than their mean atomic separation, where kB is the Boltzmann constant and
T the absolute temperature (e.g. Mandl (1988)).

Alternatively, and more commonly for monatomic systems, dσ/d� is decomposed into a
‘coherent’ part and an ‘incoherent’ part, as shown by the second line in equation (2.12). The
coherent part concerns diffraction from all atomic sites, including the ‘self-scattering’ from a
single atom, but is independent of the distribution in scattering lengths; it is a function of the
average scattering length alone. The incoherent part, by contrast, is independent of the spatial
correlation of the atomic sites and depends only on the distribution of scattering lengths present
in the sample, leading to isotropic diffraction. We thereby define the coherent and incoherent
scattering lengths,

bcoh
def= b and b2

incoh
def= (b2 − b

2
) = |b − b|2, (2.16)

as simply the average and standard deviation of the sample’s scattering length distribution,
respectively. Obviously, bincoh = 0 in the case of x-ray diffraction from a monatomic sample.
Tables of neutron bcoh and bincoh values for natural isotopic compositions and for individual
isotopes are given by, for example, Sears (1992). Note that it is possible in neutron diffraction
to have a contribution to the measured intensity from spin incoherence (e.g. for a sample
comprising a single isotope with non-zero spin), from isotope incoherence (e.g. for a sample
comprising several spinless isotopes) or from both spin and isotope incoherence (Squires
(1978) pp 21–4).

By defining the (static) structure factor S(q) as

S(q)
def= 1

N

〈 N∑
i,j

eiq·rij

〉
= H(q) + 1, (2.17)

which is dimensionless and converges to 1 for q → ∞, we can write the differential scattering
cross-section per atom for a monatomic sample in the more familiar form:

1

N

[
dσ

d�
(q)

]
= 1

N

[
dσ

d�
(q)

]coh

+
1

N

[
dσ

d�
(q)

]incoh

= b
2
S(q) + (b2 − b

2
)

= b2
cohS(q) + b2

incoh,

(2.18)
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Figure 2. Differential scattering cross-section per atom (1/N)dσ/d� = b
2
S(q) + (b2 − b

2
) for a

monatomic liquid or glass. The position of the first peak is inversely proportional to the interatomic
distance, rinteratomic.

where the q-dependence is again emphasized. Note that the above expression can be derived

from equation (2.14) by the simple operation of subtracting the coherent self-scattering b
2

from the second term and adding it to the first. Figure 2 shows the differential scattering cross-
section per atom for a typical monatomic liquid or glass. We emphasize that S(q) depends
only on the relative coordinates of the scattering centres in the system and is independent of
the nature of the probe–system interaction.

It follows from equation (2.8) that the (static) structure factor S(q) can be expressed in
terms of a more general quantity S(q, ω) which is known as the (coherent) dynamic structure
factor (van Hove 1954):

S(q) =
∫ +∞

−∞
d(h̄ω)S(q, ω), (2.19)

where h̄ω is the energy transfer between the incident quantum and the sample and S(q, ω)

is in turn directly proportional to the double differential scattering cross-section for coherent
scattering d2σ/(d� dE)|coh. As mentioned earlier, in reality the integration is limited by the
(maximum) incident energy of the beam, thus leading to the ‘snapshot’ time, τsnapshot, and
possible inelasticity corrections (discussed in section 3.1).

The structure of a monatomic sample can be described in real space (figure 3) in terms of
its pair-distribution function g(r) which is proportional to the probability of finding an atom
at a position r relative to a reference atom taken to be at the origin. The functions S(q) and
g(r) are related by the Fourier transforms:

S(q) − 1 = ρo

∫
[g(r) − 1] eiq·r dr (2.20)

and

g(r) − 1 = 1

ρo(2π)3

∫
[S(q) − 1] e−iq·r dq, (2.21)
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Figure 3. Real-space functions for a monatomic liquid or glass: (a) pair-distribution function g(r),
(b) density function D(r) and (c) radial distribution function RDF(r). The ‘cut-off’ in (a) refers to
a possible truncation point for performing a back-Fourier transformation to test the self-consistency
of a measured data set. Figure after Chieux (1993).

where ρo is the atomic number density. By construction, g(r) is dimensionless. The ‘−1’
term in the integrand of equation (2.20) represents the subtraction of the forward scattering at
q = 0 since

ρo

∫
eiq·r dr = ρoV δq,0 = Nδq,0, (2.22)

where V is the volume of the sample and δq,0 is the Kronecker delta which has the property
δq,0 = 1 when q = 0 and δq,0 = 0 when q 
= 0. As discussed for equation (2.18), the ‘−1’
term in the integrand of equation (2.21) represents, in turn, the subtraction of the coherent
self-scattering so that the Fourier transform is taken of only the distinct part H(q) = S(q) − 1
of the diffractogram. We will see later that this remains the case for a polyatomic sample.

In the case of a liquid or glass sample for which the average structure is isotropic, only
the vector norms r = |r| and q = |q| are relevant. By averaging over the relative orientations
of r and q, the exponential terms in equations (2.13), (2.20) and (2.21) can be written as
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zeroth-order spherical-Bessel functions (Debye 1915) thereby simplifying the expression for
the static structure factor:

S(q) = 1 +
1

N

〈 N∑
i,j 
=i

sin(qrij )

(qrij )

〉
, (2.23)

as well as the expressions for the Fourier transforms:

S(q) − 1 = 4πρo

q

∫ ∞

0
r[g(r) − 1] sin(qr) dr (2.24)

and

g(r) − 1 = 1

2π2rρo

∫ ∞

0
q[S(q) − 1] sin(qr) dq, (2.25)

whence S(q → ∞) = 1 and g(r → ∞) = 1. In a real diffraction experiment for a liquid or
glass sample, this orientational average is obtained from the sum of diffraction contributions
of different coherence volumes within the sample. For a monatomic system one also defines
the density function D(r) as

D(r)
def= 4πrρo[g(r) − 1] = 2

π

∫ ∞

0
q[S(q) − 1] sin(qr) dq, (2.26)

whose slope at small r is proportional to ρo since g(r) is exactly zero for r-values below a
certain minimum interatomic distance. The radial distribution function RDF(r), given by

RDF(r)
def= 4πr2ρo g(r), (2.27)

can be integrated to obtain the average number of neighbouring atoms in a coordination shell:

n =
∫ r2

r1

RDF(r) dr = 4πρo

∫ r2

r1

g(r)r2 dr, (2.28)

where r1 and r2 are the distances corresponding, for example, to consecutive minima in g(r)—
the deeper the minima, the more robust the delimitation of atomic shells. The average number
of atoms in the first (i.e. innermost) shell is often called the coordination number. It should
be noted that there is often some confusion about the meaning of the coordination number.
Firstly, it does not mean that every atom in the structure has this number of atoms around it;
the coordination number is an average—hence it is quite reasonable to have a non-integral
number. Secondly, the definition of the limits of the first shell in equation (2.28) is somewhat
arbitrary and various methods for quoting coordination numbers are often used, e.g. integrating
to the first minimum in g(r), fitting and integrating peaks in g(r) (see, e.g. Pings (1968)).

In practice, the finite maximum q-value that is accessible in diffraction experiments,
qmax, leads to peak broadening in real space after Fourier transformation as well as to non-
physical oscillations in g(r) and in other r-space functions. Such ‘truncation ripples’ can be
reduced via prudent modulation of the experimental S(q) by a damping function before Fourier
transformation (e.g. Lorch (1969)), being equivalent to a coarsening of the r-space resolution.
Alternatively, the step-function describing the experimental q-range, M(q � qmax) = 1,
M(q > qmax) = 0, can be Fourier-transformed to produce the r-space modification function

M(r) = 1

π

∫ qmax

0
cos(qr) dq (2.29)

with which theoretical r-space functions should be convolved before comparison or fitting to
Fourier-transformed diffraction data (e.g. Petri et al (2000), Waser and Schomaker (1953)).
For example, the modified pair-distribution function becomes

rg′(r) = rg(r) ⊗ M(r), (2.30)
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where ⊗ denotes the one-dimensional convolution operator. A minimum noise procedure has
also been developed to estimate uncertainties in g(r) resulting from the Fourier transformation
of measured S(q) (Soper et al 1993). Limitations associated with the Fourier transformation
(or inversion) of diffraction data have also been discussed by Leadbetter and Wright (1972b)
and by Waser and Schomaker (1953).

It should also be mentioned that coherent diffraction techniques, such as variable coherence
electron diffraction (Gibson and Treacy 1997, Treacy and Gibson 1996) and other fluctuation
microscopy techniques (see review by Treacy et al (2005)), can give information about higher-
order (3- and 4-body) distribution/correlation functions that are relevant to medium range order
in glasses. See also Soper (2001), Evans (1990) and Schofield (1968) for a discussion of higher-
order correlation functions relevant to diffraction.

Finally, there is a useful thermodynamic limit for the static structure factor of a monatomic
system:

S(0) = ρoχT kBT , (2.31)

where χT is the isothermal compressibility, kB the Boltzmann constant and T the absolute
temperature. In the case of an ideal (monatomic) gas, the pressure P = ρokBT and χT = 1/P ,
so that S(0) = 1. For a (monatomic) liquid having larger ρo but much smaller χT , we have
S(0) < 1 except for state points close to the liquid/gas critical point.

2.3. The case of a polyatomic system

In a monatomic system all the atoms are chemically identical, and we can normally assume
that there is no correlation between scattering length and atomic position in the sample. This
assumption allowed the derivation of equation (2.18) which we used to define a dimensionless
structure factor S(q) having a simple thermodynamic limit. For a polyatomic system, we can
still assume a random assignment of (neutron) scattering lengths over the sites occupied by a
given chemical species α (having atomic number Zα), but different α have different isotopes
and therefore different scattering length distributions for neutron diffraction and, of course,
different x-ray scattering lengths that depend on Zα . Different chemical species also have
different interatomic interactions (chemical bonding) and so do not in general occupy each
other’s sites. Therefore, a polyatomic system will usually have an overall correlation between
scattering length and atomic position in the sample. This correlation prevents, except for
special cases, the definition of a single dimensionless structure factor for a polyatomic system;
instead we are obliged to consider several partial structure factors.

We can however generalize equation (2.14) to a system of n chemical species, again
separating ‘distinct’ and ‘self’ terms:

1

N

[
dσ

d�
(q)

]
= F(q) +

n∑
α

cαb2
α, (2.32)

where F(q) is the total interference function and cα is the concentration of chemical species α

(such that
∑n

α cα = 1). The second term of equation (2.32) is therefore the mean of the
scattering length squared of each chemical species as averaged over the entire sample:

n∑
α

cαb2
α = b2 where b2

α = b2
coh,α + b2

incoh,α. (2.33)

Since for a polyatomic system we are generally interested in describing the distribution
of one chemical species around another, it is convenient to choose the convention of
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Faber and Ziman (1965) for defining partial structure factors Sαβ(q) by decomposing F(q) in
the following manner:

F(q)
def=

n∑
α,β

cαcβbαb
∗
β[Sαβ(q) − 1], (2.34)

where each Sαβ(q) is a function that is dependent only on the distribution of α atoms around
β atoms (or vice-versa). It should be noted that a different definition for partial structure
factors due to Ashcroft and Langreth (1967) is also commonly used, especially in papers on
theory and computer simulation. The relationship between the Ashcroft–Langreth, SAL

αβ (q),
and Faber–Ziman, Sαβ(q), partial structure factors is given by (e.g. Cusack (1987) section 3.12)

SAL
αβ (q) = δαβ + (cαcβ)1/2[Sαβ(q) − 1], (2.35)

where δαβ is the Kronecker delta. In this review we shall mostly confine ourselves to the
Faber–Ziman (FZ) description, which had in fact been proposed earlier by Fournet (1957).

As mentioned earlier, the complex conjugate (b
∗
β) is rarely necessary for neutron

diffraction, and the averaging bars (bα) are superfluous for x-ray diffraction. However, the
scattering lengths for the latter have significant dependences on both q and incident energy Eo

that will be considered later.
By analogy with equation (2.23), the FZ partial structure factors for an isotropic system

can be written as

Sαβ(q) = Sβα(q) = 1 +
1

cαcβN

〈Nα,Nβ∑
i,j 
=i

sin(qrij )

(qrij )

〉
, (2.36)

where Nα = cαN is the number of α atoms and i and j refer to sites among the α and
β atoms, respectively. Evidently the equivalence of sites i = j is only possible within a single
chemical species (i.e. for α = β). Fourier transformation of the Sαβ(q) leads to the partial
pair-distribution functions gαβ(r):

Sαβ(q) − 1 = 4πρo

q

∫ ∞

0
r[gαβ(r) − 1] sin(qr) dr, (2.37)

gαβ(r) − 1 = 1

2π2rρo

∫ ∞

0
q[Sαβ(q) − 1] sin(qr) dq, (2.38)

where ρo is still the total number density of atoms. Note that Sαβ(q → ∞) = 1 for all α, β

in analogy to the S(q) of a monatomic system. The gαβ(r) are a measure of the probability of
finding a β atom at a distance r from an α atom (e.g. Fournet (1957) p 317). More precisely,
the partial coordination number nβ

α (i.e. the average number of β atoms in a spherical shell
around an α atom) is found through integration of a partial radial distribution function:

nβ
α = 4πρocβ

∫ r2

r1

gαβ(r)r2 dr. (2.39)

A Fourier transform of F(q) defines the total pair-correlation function G(r) as

G(r)
def= 1

2π2rρo

∫ ∞

0
qF(q) sin(qr) dq

N=
n∑

α,β

cαcβbαb
∗
β[gαβ(r) − 1],

(2.40)

which is a simple weighted sum of the gαβ(r) only in the case of neutron ‘N’ diffraction for
which the scattering lengths are q-independent.
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For neutron and x-ray diffraction studies of glasses, one often defines the total correlation
function T (r) as

T (r)
def= 4πrρo


G(r) +

n∑
α,β

cαcβbαb
∗
β


 , (2.41)

where

n∑
α,β

cαcβbαb
∗
β =

∣∣∣∣∣
n∑
α

cαbα

∣∣∣∣∣
2

= b
2

(2.42)

and b = ∑n
α cαbα is the mean scattering length as averaged over the entire sample. The T (r)

function is theoretically zero below a certain minimum distance between atoms and has the
advantage of peaks that are symmetrically broadened by a finite qmax (Wright 1980). It also
leads directly to a total radial distribution function R(r) via

R(r)
def= rT (r). (2.43)

In practice, experimental results for diffraction by (especially polyatomic) liquids and glasses
should be compared with theory/simulation in both r-space and q-space, as well as with results
from other experimental techniques, so as to fully appreciate the significance of single features
such as a ‘first sharp diffraction peak’ (FSDP) (see, e.g. Salmon (1994)).

Note that we are following the convention of Enderby (1993) and others who reserve
the symbols S [i.e. S(q), Sαβ(q)] and g [i.e. g(r), gαβ(r)] as well as H(q) and D(r) for
monatomic systems or partial functions and employ the symbols F [i.e. F(q), �xF(q)] and
G [i.e. G(r), �xG(r)] as well as T (r) for polyatomic systems. Some researchers define

Hαβ(q)
def= Sαβ(q) − 1 for convenience (e.g. Soper and Luzar (1992)) while others use Aαβ(q)

instead of Sαβ(q) to denote the Faber–Ziman (FZ) partial structure factors. A review of different
types of notation for these and other functions is given by Keen (2001).

By taking the limit as r → 0 in equation (2.38) we obtain a sum-rule that can be useful
for checking the normalization of partial structure factors (Norman 1957, Krogh-Moe 1956):∫ ∞

0
q2[Sαβ(q) − 1] dq = −2π2ρo, (2.44)

where ρo is again the total atomic number density. As seen from equation (2.25), this sum-rule
also holds for a monatomic system, where S(q) replaces Sαβ(q).

Bhatia and Thornton (1970) define for a binary system an alternative set of partial structure
factors, SNN(q), SCC(q) and SNC(q), describing, respectively, the distributions of atomic
number density, of concentration and the correlation between the two. The measured total
interference function F(q) can be expressed in terms of Bhatia–Thornton (BT) partial structure
factors as

F(q) = |〈b〉|2SNN(q) + |b1 − b2|2SCC(q) + [〈b〉(b∗
1 − b

∗
2) + 〈b〉∗(b1 − b2)]SNC(q)

−(c1b
2
1 + c2b

2
2), (2.45)

where c1 and c2 are the atomic concentrations and 〈b〉 = c1b1 + c2b2 is the overall average
scattering length. Fourier transformation leads to the BT partial pair-distribution functions
gNN(r), gCC(r) and gNC(r).

The Bhatia–Thornton and Faber–Ziman formalisms are connected by simple
linear combinations involving only the concentrations c1 and c2 of the two species
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(e.g. Cusack (1987)):

SNN(q) = c2
1S11(q) + c2

2S22(q) + 2c1c2S12(q),

SCC(q) = c1c2[1 + c1c2(S11(q) + S22(q) − 2S12(q))], (2.46)

SNC(q) = c1c2[c1(S11(q) − S12(q)) − c2(S22(q) − S12(q))],

where the coefficients differ slightly from those for the r-space functions:

gNN(r) = c2
1g11(r) + c2

2g22(r) + 2c1c2g12(r),

gCC(r) = c1c2[g11(r) + g22(r) − 2g12(r)], (2.47)

gNC(r) = c1[g11(r) − g12(r)] − c2 [g22(r) − g12(r)].

The number–number partial structure factor, SNN(q), concerns the sites of all the scattering
nuclei without regard to the chemical species decorating those sites and therefore represents the
‘colour-blind’ scattering cross-section, i.e.SNN(q)would be measured directly if both chemical
species had the same average (i.e. coherent) scattering length. The concentration–concentration
partial structure factor, SCC(q), describes the ordering of the two chemical species with respect
to the sites specified by SNN(q). When there is a preference for like or unlike neighbours at a
given distance, corresponding positive or negative peaks will appear in gCC(r), respectively.
For an ideal (solid or liquid) solution, in which the two chemical species mix randomly without
volume change or heat of mixing, all three FZ partial structure factors are equal and hence
SCC(q) = c1c2, i.e. constant. Conversely, any q-dependence in SCC(q) indicates non-ideal
substitution between the two species. Note that if the sample is a ‘zero alloy’, having 〈b〉 = 0,
then SCC(q) is measured directly in a diffraction experiment. The real-space counterpart of
SNC(q), namely gNC(r), describes the correlation between sites and their occupancy by a
given chemical species. If the sample is an ideal solution then there is no correlation between
site and chemical species, so that SNC(q) = 0 and therefore all q-dependence in F(q) (and
hence all structural information) is contained in SNN(q). Salmon (1992) gives a thorough
discussion of Bhatia–Thornton partial structure factors for 2 : 1 binary systems MX2. The
Bhatia–Thornton (1970) structure factors in the q → 0 limit are more directly expressed in
terms of thermodynamic quantities than are those of Faber–Ziman (1965), and their general
behaviour at low-q can be usefully related to the moments of the corresponding partial pair-
distribution functions (Salmon 2005). In addition, the fact that the measured intensity in a
diffraction experiment is positive or zero provides numerical limits on the BT partial structure
factors, namely SNN(q) � 0, SCC(q) � 0 and SNN(q)SCC(q) � S2

NC(q) (Bhatia and Thorton
1970). Equivalent expressions for the Faber–Ziman partial structure factors are given by
Enderby et al (1966).

2.4. The case of a molecular liquid or gas

For a molecular liquid of Nmol molecules containing m atoms per molecule, either of the
same or different chemical species, the total differential scattering cross-section in the static
approximation can again be separated into incoherent and coherent terms:[

dσ

d�
(q)

]
=

[
dσ

d�
(q)

]incoh

+

[
dσ

d�
(q)

]coh

(2.48)

where [dσ/d�(q)]incoh = Nmol
∑m

i b2
incoh,i , the index i refers to sites on the same molecule and

bincoh,i is the incoherent scattering length of the chemical species at site i (recall that bincoh,i = 0
in the case of x-ray diffraction). It is then convenient to further separate the coherent term



252 H E Fischer et al

into its contributions from self, intramolecular and intermolecular terms (e.g. Bertagnolli et al
(1976)): [

dσ

d�
(q)

]coh

=
[

dσ

d�
(q)

]coh

self

+

[
dσ

d�
(q)

]coh

intra

+

[
dσ

d�
(q)

]coh

inter

(2.49)

where [dσ/d�(q)]coh
self = Nmol

∑m
i b

2
i and bi is the coherent scattering length of the chemical

species at site i. If the mean relative positions of the atoms in a molecule remain the same
(e.g. there are no internal rotations) and the vibrational motion can be approximated as being
harmonic then provided the liquid is isotropic,[

dσ

d�
(q)

]coh

intra

= Nmol

m∑
i,j 
=i

bib
∗
j

sin(qrij )

(qrij )
e−〈δr2

ij 〉q2/2, (2.50)

where i and j refer to sites on the same molecule, for which rij is the modulus of their mean
separation, and in the Debye–Waller term 〈δr2

ij 〉 = 〈u2
i 〉 + 〈u2

j 〉 where 〈u2
i 〉 is one component

of the mean squared vibrational amplitude for the atom at site i. The intermolecular term, for
an isotropic liquid, is then[

dσ

d�
(q)

]coh

inter

=
〈 Nmol∑
y,z 
=y

m∑
k,l

bkb
∗
l

sin(qrkylz)

(qrkylz)

〉
, (2.51)

where k and l refer to sites on different molecules y and z, respectively, for which rkylz =
|rky − rlz| is their separation. Note that the intramolecular and intermolecular differential
scattering cross-sections contain no self-scattering terms.

Since the molecular structure is usually known and not sought in the experiment, in general
the incoherent, coherent, self and intramolecular terms can be calculated or fitted and then
subtracted from the total differential scattering cross-section, leaving the intermolecular term
which can be written as a linear combination of partial intermolecular structure factors S inter

αβ (q):

1

N

[
dσ

d�
(q)

]coh

inter

=
n∑

α,β

cαcβbαb
∗
β[S inter

αβ (q) − 1], (2.52)

where N = mNmol is the total number of atoms and n the number of chemical species. Each
S inter

αβ (q) thus involves correlations only between α and β atoms on different molecules—useful
for e.g. isolating solvent-solute structures.

It is often useful to consider the correlations between the centres of different molecules
which we define by vectors Rcy and Rcz. Following Page (1972), Egelstaff et al (1971) and
Zachariasen (1935), we can then write the coherent differential scattering cross-section as

[
dσ

d�
(q)

]coh

= Nmol

∣∣∣∣∣
m∑
i

bi

∣∣∣∣∣
2

Smol(q), (2.53)

where the structure factor for the molecular assembly is defined by

Smol(q)
def= f1(q) +

1

Nmol

〈 Nmol∑
y,z 
=y

e−iq·(Rcy−Rcz)

〉
f2(q), (2.54)

and it is assumed, in deducing the second term, that the orientation of molecule y relative to
molecule z is statistically independent of their relative separation (Gray and Gubbins (1984)
give useful expressions for the case of relative orientations being correlated with molecular
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separation). The intramolecular form factor f1(q) characterises the scattering from a single
molecule and is given by

f1(q) = 1

Nmol

∣∣∑m
i bi

∣∣2

([
dσ

d�
(q)

]coh

self

+

[
dσ

d�
(q)

]coh

intra

)
, (2.55)

where the rij in equation (2.50) still refer to the relative separation of sites within the same
molecule. For an isotropic liquid, the intermolecular form factor f2(q), which includes
orientational correlations between molecules, becomes

f2(q) = 1∣∣∑m
i bi

∣∣2

〈 m∑
k,l

bkb
∗
l

sin(qr ′
kylz)

(qr ′
kylz)

〉
, (2.56)

where r ′
kylz = |r′

ky − r′
lz| and r′

ky ≡ rky − Rcy , r′
lz ≡ rlz − Rcz are the coordinates of atom k

in molecule y and of atom l in molecule z 
= y defined relative to their respective molecular
centres. In the limit as q → 0, we see that f1(q) → 1 and f2(q) → 1 such that

Smol(q) = 1 +
1

Nmol

〈 Nmol∑
y,z 
=y

e−iq·(Rcy−Rcz)

〉
. (2.57)

Comparison with equations (2.13) and (2.17) shows that the structure factor Smol(q) becomes
equivalent to that for a liquid of ‘super-atoms’, each having a coherent scattering length of

bmol
def= ∑m

i bi . We can thereby regain the thermodynamic limit of equation (2.31) for a
molecular liquid:

1

Nmolb
2
mol

[
dσ

d�
(q → 0)

]coh

= ρmolχT kBT , (2.58)

where ρmol = ρo/m is the number density of molecules. In the case of an ideal gas,
χ−1

T = P = ρmolkBT such that χT is increased by a factor of m for a molecular gas as
compared with an atomic gas having the same total atomic density ρo and temperature T .

The above formulae are similar to those presented by, e.g. Powles (1973) and can be
generalized to mixtures of molecular liquids (e.g. Pfleiderer et al (2001), Bowron et al (1998a),
Soper and Luzar (1992)) as well as adapted to the case of ions in aqueous solution (e.g. Bruni
et al (2001), Enderby and Gullidge (1987), Enderby and Neilson (1981), Soper et al (1977)).

3. Neutron diffraction by liquids and glasses

Some of the earliest neutron diffraction studies of liquids were carried out by Chamberlain
(1950) on molten sulfur, lead and bismuth, followed by Henshaw et al (1953) on liquid
nitrogen, oxygen and argon and by Sharrah and Smith (1953) on molten lead and bismuth
at two temperatures. North et al (1968) reviewed the method of obtaining structure factors
from neutron diffraction and presented experimental results for some liquid metals, while
Enderby (1968) discussed other neutron scattering studies on liquids. Page (1973) gives an
early pedagogical presentation of the neutron diffraction technique as applied to liquids. As
concerns glasses, Breen et al (1957) performed variable-wavelength total neutron scattering
experiments on vitreous silica and compared their radial distribution functions with those
obtained from x-ray diffraction measurements. More accurate results were obtained using
conventional neutron diffraction methods by Lorch (1969) on vitreous germania and silica, by
Leadbetter and Wright (1972a) on BeF2 and other binary glasses and by Hansen et al (1975)
on amorphous selenium. Wright (1974) and Wright and Leadbetter (1976) give early reviews
of studies of glass structure using methods that include neutron diffraction.
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Figure 4. Measured diffraction intensities (diffractograms) for a typical neutron diffraction
experiment on a liquid sample at a reactor source (D4c diffractometer at ILL). From top to
bottom: sample in its container and sample environment, the final sample diffractogram after
proper subtraction of the other intensities, the sample environment and empty sample container,
the sample container after proper subtraction of the sample environment, and the background counts
of the empty instrument. For clarity, the diffractogram of the empty sample environment (i.e. no
sample nor container) is not shown.

3.1. Data treatment for neutron diffraction

To obtain a sample’s dσ/d� from a real neutron diffraction experiment, it is of course
necessary to subtract the diffraction intensities coming from the sample container, the sample
environment (e.g. furnace, cryostat) and the background (arising from neutrons and electronic
noise). Therefore, separate diffractograms are necessary for the sample in its container in
the sample environment, the empty container (i.e. no sample) with sample environment, the
empty environment (i.e. no container nor sample) and the background or empty instrument
(see figure 4). In subtracting these intensities, account must be made of attenuation (from
absorption and scattering) and multiple scattering, which originate not only from the sample
environment but also from the sample itself. In other words, we now need to go beyond the
‘small sample limit’ wherein the mean free path of a neutron is very much larger than the
linear dimensions of the sample so that virtually all the incident neutrons pass undisturbed
through the sample (e.g. Sears (1978, 1975)). Furthermore, use of the static approximation
means that inelasticity corrections to the measured diffraction intensity are generally required
and are particularly large when the sample contains light atoms. A practical summary of the
data treatment and corrections for neutron scattering by liquids is given by Egelstaff (1987).
The basics for the case of a reactor source experiment are discussed by Johnson et al (1983),
while Salmon et al (2004) offer a more recent summary for reactor–source data, including a
comparison between different inelasticity corrections as well as a deconvolution procedure to
take into account the q-space resolution function.

Our brief review of neutron diffraction data analysis is somewhat general but more
pertinent to reactor sources. At pulsed sources, additional complications arise because
of the distribution of incident wavelengths and the need to combine data accurately from
different detector banks, each requiring different corrections, into a single diffractogram dσ/d�

as a function of q. For more information on experimental technique and data treatment
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for neutron diffraction at pulsed sources, the reader is referred to Postorino et al (1994)
(molecular liquids), Soper and Luzar (1992) (mixtures of molecular liquids), Grimley et al
(1990) (glasses), Soper (1990) (maximum entropy method), Hannon et al (1990) (general),
Howe et al (1989) (liquids), Carpenter (1985) (glasses), Windsor (1981) (general), as well as
internal reports/publications of the ISIS pulsed neutron facility (UK): Hannon et al (2005),
Soper et al (2000) and Benmore and Soper (1998). Bermejo et al (1989) have made a useful
and critical comparison of the measured static structure factor, S(q), of a liquid as measured
by diffraction at reactor and pulsed sources.

The normalization of a sample’s diffraction intensity to an absolute cross-section can be
effected via a comparison with the measured intensity of a different sample of known scattering
cross-section, whose volume in the beam is known with respect to the sample’s. In general
vanadium is used as a normalization standard because its accurately known cross-section is
almost completely incoherent and therefore isotropic and easily quantified even for pulsed
neutron sources (see Mayers (1984) for theoretical calculations). Lack of a vanadium or other
standard may necessitate an ‘auto-normalization’ of dσ/d� by aligning the self-scattering
with the theoretical value for the sample’s composition. Additional checks on normalization
can be effected by, for example, the use of a sum-rule as in equation (2.44) for S(q) or Sαβ(q)

after corrections for attenuation, multiple scattering and inelasticity have been made.
Attenuation corrections (resulting from both absorption and scattering, i.e. the total cross-

section) have been treated by Paalman and Pings (1962) for the case of a completely and
uniformly illuminated sample of cylindrical geometry in an annular container, being a simple
but common sample configuration (the work was extended to incomplete illumination by
Kendig and Pings (1965) and by Soper and Egelstaff (1980)). They provide coefficients,
dependent on scattering angle, that permit the proper subtraction of the empty-container
diffractogram taking into account the attenuation of the sample and its container (e.g. Salmon
(1988) for a thorough application). Their method can be simply extended to other sample
and container geometries (e.g. Mitchell et al (1976)). However, these results presuppose that
each neutron contributing to the diffractogram is scattered only once, thereby ignoring the
effects of multiple scattering. Numerical solutions for multiple scattering corrections, based
on quadrature (e.g. Soper (1983), Soper and Egelstaff (1980), Blech and Averbach (1965)),
generally assume that a neutron undergoes one or more scattering events in the sample, where
each individual scattering event is both elastic and isotropic. These corrections are complicated
and highly dependent on sample and sample environment geometries. Monte Carlo simulations
have also been used for complex sample environments (e.g. Bausenwein et al (1991), Poncet
(1978)), but their precision has in general been limited by simulation counting statistics.

For high-precision or small-sample experiments, the background diffraction intensities
(e.g. from sample environment and empty instrument) must be carefully subtracted. By
replacing the sample under study by a nearly perfectly absorbing specimen of like dimensions
(e.g. cadmium or 10B4C), one can separate the sample-attenuated and non-attenuated
background intensities, to which different coefficients can be applied during subtraction (e.g.
Bertagnolli et al (1976)).

The inelasticity correction has been treated by Placzek (1952) and others (see Salmon
et al (2004) for a comparison of different methods). As mentioned earlier, an inelasticity
correction becomes necessary when the energy exchange, h̄ω, between the neutron and the
sample becomes comparable to the incident energy Eo, leading to a breakdown of the static
approximation. An additional consequence is that, for a given λo, loci of equal 2θ in the
detector plane no longer correspond well to loci of equal q, as the scattering angle depends not
only on q but also on h̄ω (e.g. Yarnell et al (1973), appendix A). The integral of equation (2.7)
is, therefore, no longer performed at constant q, as required for the static approximation.
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(b)

(a)

Figure 5. Measured diffraction intensities, I (q), comparing inelasticity effects for liquid samples
containing light atoms: (a) 2 molal solutions of NiCl2 in light water, ‘null’ water or heavy water as
measured using the D20 diffractometer at the ILL (reactor source) by Powell et al (1989)—figure
reproduced with permission from IOP Publishing Limited (Bristol); (b) light water, heavy water
or a 1 : 1 mixture at 25 ˚C as measured at two different scattering angles, 2θ , using the SANDALS
instrument at ISIS (pulsed neutron source) by Soper (2005a). The inelasticity effects are represented
by (a) smooth fitted lines or (b) data sets that have a slope at smaller q-values that becomes more
significant with decreasing nuclear mass. In (b) the data sets at fixed 2θ -values cover different
q-ranges since q = 4π sin θ/λo equation (2.10) and the range of incident neutron wavelengths is
fixed. Also, at a given 2θ -value, smaller incident neutron energies correspond to smaller q-values
and hence larger inelasticity effects. Note that the general slope on the 2θ = 20.2˚ data at large
q-values is a consequence of a detector deadtime artefact which is most prevalent for strongly
scattering samples.

In general, only the self part of the differential scattering cross-section is appreciably
affected by inelasticity. For neutron diffraction from reactor sources, the self-scattering
‘falls off’ with increasing q, as shown in figure 5(a)—intuitively, one can think of the nuclear
scattering length passing from the ‘bound’ to the ‘free’ value with increasing scattering angle
at a given wavelength, since the atom receives an increasing ‘jolt’ of momentum transfer from
the neutron (Soper et al (1977) appendix, Powles (1973)). Except for the lightest atoms, the
correction for reactor sources can be expressed in the form

[
dσ

d�
(q)

]self

measured

=
[

dσ

d�
(q)

]self

corrected

[1 + P(q)] , (3.1)
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where P(q) is a polynomial expansion in powers of q2 and the ratio mn/Mα of the neutron’s
mass to that of atoms in the sample. In practice, it is therefore oftentimes a simple matter
of subtracting a polynomial in q2 from the measured dσ/d� to obtain directly the distinct
part after normalization. It should be noted that the function P(q) needs to be calculated
for each instrument used as it depends on the precise details of the detector efficiency.
Yarnell et al (1973) provide convenient formulae for calculating the coefficients of the
polynomial.

A neutron striking an atom of small mass will transfer more energy, making the static
approximation less valid. The ‘Placzek falloff’ with increasing q (for a reactor source) is
steeper and of greater magnitude for light atoms. For H and other very light atoms, there is in
fact no suitable polynomial in q2 that can be used to correct the data for inelasticity effects. In
this case several heuristic schemes for ‘fitting’ the Placzek falloff have been used for reactor-
source data. For example, a linear combination of a Lorentzian function and a Gaussian
function of equal full-width at half-maximum or FWHM (i.e. a pseudo-voigt function) fits
well the intensity falloff (as a function of q and not 2θ ) for H concentrations greater than about
20 at.% (e.g. Fischer (1997) pp 73–4 and figure 5(a) for H2O).

The inelasticity effects on the distinct part of dσ/d� are generally much weaker than for
the self part (e.g. Soper et al (1977) appendix). The physical intuition is that the momentum
transfer of the neutron, h̄q, is not localized to a single atom, as in isotropic self-scattering,
but to all the atoms in its coherence volume (of size increasing with the tightness of the
collimation and the fineness of the wavelength resolution). Therefore, not only is the inelastic
‘shock’ more distributed but the atoms tend to move together so that their relative distances,
seen in the distinct term of dσ/d�, are less distorted. In spite of the effect being weaker,
an inelasticty correction to the distinct term, often imprecisely referred to as the coherent
scattering term, should in principle still be applied. Again the inelastic effects are expected
to be larger for spatial correlations between light atoms and may produce inaccurate distances
in the g(r) obtained by Fourier transformation. However, in order to correct the distinct part
for inelasticity effects, a complete description of the response, i.e. S(q, ω), is needed, leading
to supplementary inelastic scattering experiments and an iterative solution at best. Certain
aspects of inelasticity corrections for neutron scattering by molecular fluids are discussed
in a recent review by Guarini (2003)—see also Egelstaff and Soper (1980a, 1980b) and
Powles (1973).

Inelasticity effects are generally weaker for diffraction measurements at pulsed neutron
sources due to higher incident energies, provided the diffraction patterns are measured at small
scattering angles, and occur principally at low q-values in the diffractogram (thus weakening
the effect on the Fourier transform), but the effects are more difficult to parametrize than for
reactor sources. For information on inelasticity corrections for pulsed-source diffraction data,
the reader is referred to, for example, Grimley et al (1990), Howe et al (1989) or the ‘ATLAS
manual’ (Soper et al 2000). The SANDALS instrument (Soper 1989) at the ISIS pulsed neutron
source (UK) was designed to minimize inelasticity corrections through small-angle detection
of high-energy neutrons, while maintaining a high maximum q-value for good resolution
in r-space. Figure 5(b) shows an example of the effects of inelasticity on a diffractogram
measured by SANDALS.

Finally, although neutron absorption resonances are rare at diffraction wavelengths
(Sinclair 1993), the scattering length b = b′ + ib′′ generally shows strong variation at such
resonances, as a function of incident neutron wavelength. Figure 6 shows this variation for the
case of 113Cd. For pulsed-source neutron diffractometers a broad range of incident wavelengths
is used, so that absorption resonances must either be avoided (by excluding certain isotopes in
the sample) or taken into account as accurately as possible.
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Figure 6. Variation of the real and imaginary parts b′, b′′ of the neutron scattering length of 113Cd,
as a function of incident wavelength, near the absorption resonance occurring at λo = 0.68 Å. Note
that bo is the limiting value of b′ for zero wavelength and �b′ = b′ − bo. Figure from Bacon
(1975) and reproduced by permission of Oxford University Press.

3.2. Neutron diffraction with isotopic substitution (NDIS)

In order to determine experimentally the partial structure factors Sαβ(q) (and therefore
the gαβ(r) by Fourier transformation) from measurements of the differential scattering
cross-section dσ/d� for a polyatomic system, one can use the technique of neutron diffraction
with isotopic substitution (NDIS). The pioneering NDIS experiment was performed by
Enderby et al (1966) who determined the partial structure factors of liquid Cu6Sn5. The
method was then applied to molten CuCl in the study by Page and Mika (1971). A later
NDIS study by Edwards et al (1975) on molten NaCl used a more sophisticated data analysis
technique that was discussed in detail. Better values for the Cl scattering lengths were
incorporated into later studies by Eisenberg et al (1982) on molten CuCl and by Biggin
and Enderby (1982) on molten NaCl. Enderby et al (1973) discussed the feasibility of
doing NDIS on aqueous solutions, where the partial structure factors of water can dominate
even when D2O is used, and then Soper et al (1977) applied the technique to ionic
solutions in heavy water. McGreevy and Mitchell (1982) have discussed and compared
different self-consistent methods for smoothing/fitting the partial structure factors obtained
by NDIS.

As described by Chieux (1993, 1978), Page (1973) and others, the NDIS technique consists
of measuring dσ/d� and hence F(q) for several samples of identical structure and chemical
composition (i.e. the same cα) but having different isotopic compositions for one or more of
the species α (of atomic number Zα):

Fi(q) =
n∑

α,β

cαcβbαibβi[Sαβ(q) − 1], (3.2)

where bαi is the average scattering length of the α atoms in sample i (in this subsection we
will assume for simplicity that all scattering lengths are real-valued—see, e.g. Sears (1992)
for a table).

A sample of n chemical species has m = n(n + 1)/2 independent partial structure factors,
requiring m samples of differing isotopic composition for a complete determination of the
Sαβ(q) (Price and Pasquarello (1999) give a detailed analysis of this requirement). Therefore,
equation (3.2) is generally expressed in matrix form which in the case of a binary system,
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having two species x and y, becomes


F1(q)

F2(q)

F3(q)


 =




c2
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2
x1 c2
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2
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2
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Sxx(q) − 1

Syy(q) − 1
Sxy(q) − 1


 ,

(3.3)

that is,

[F(q)] = [A][S(q) − 1], (3.4)

which can be inverted to solve for the partial structure factors Sαβ(q):

[S(q) − 1] = [A]−1[F(q)]. (3.5)

The determinant |A|n, normalized by dividing each row i of [A] by (
∑

j a2
ij )

1/2, is a measure of
the conditioning of the matrix (Westlake 1968), i.e. of the robustness in the determination of the
Sαβ(q), resulting from the scattering length ‘contrast’ between the Fi(q). Although |A|n = 1
is the ideal case, values less than 0.1 are in general encountered in NDIS experiments. It
is observed that |A|n is oftentimes a rough indication of the maximum fractional statistical
uncertainty permissible for each measured diffractogram if statistically significant partial
structure factors are to be obtained.

It can also be convenient to display the matrix using another normalization, obtained
by dividing each row i of the original matrix by

∑
j aij , which ensures that the sum of

the coefficients of the partial structure factors is unity for each Fi(q), that is
∑

j aij = 1.
This is equivalent to dividing each Fi(q) by the square of its overall average scattering
length 〈bi〉2 = ∑n

α,β cαcβbαibβi = (
∑n

α cαbαi)
2, e.g. in the case of a binary system

〈bi〉2 = (cxbxi + cybyi)
2.

When a NDIS matrix is very poorly conditioned, i.e. almost singular, it is preferable
to make an analysis using the technique of singular value decomposition (SVD) (Press
et al (1999) pp 59–70). The advantage of this numerical technique is that one obtains
the relative error and its sign (+/−) for each of the n(n + 1)/2 partial structure factors,
Sαβ(q). For example, one might find that a positive error in Sαα(q) produces a negative
error in Sαβ(q) (for α 
= β). The absolute errors can then be obtained for each partial structure
factor via an analysis of the ‘Turing number’, a method that is well explained by Ludwig
et al (1987c).

As NDIS experiments generally last several days, it is important to have very good stability
in the detectors and sample environment, and this can be monitored by dividing or subtracting
diffractograms from successive time segments of a long acquisition (e.g. Jal et al (1990)). The
D4c neutron diffractometer (Fischer et al 2002, 1998) at the Institut Laue-Langevin (ILL) has
been optimized for high-accuracy measurements (minimization of both random and systematic
errors) on liquids and glasses and is particularly useful for isotopic substitution experiments
(see also Cuello et al (2005), Cicognani (2005)). Since the differences between the Fi(q)

diffractograms are at times less than 1%, it is necessary to control very precisely the production
of the NDIS samples to assure that their structures are identical, and difficulty therein arises
because of the high price and small quantities of available isotopes.
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Figure 7. Neutron diffraction data for liquid Ag2Se samples of three different isotopic compositions
(‘nat’ = natural composition), shown as total interference functions F(q)—i.e. as dσ/d� per
atom after subtraction of the self-scattering. Figure from Barnes et al (1997) and reproduced with
permission from IOP Publishing Limited (Bristol).

NDIS experiments involving substitution on both chemical species in binary systems
have been carried out, among others, by Penfold and Salmon (1991) on liquid GeSe2, by
Barnes et al (1997) on liquid Ag2Se and by Salmon and Petri (2003) on glassy GeSe2.
Figures 7, 8 and 9 show the results of the Ag2Se study (D4b instrument at ILL), for
which the normalized determinant was |A|n = 0.029, and illustrate the quality of partial
structure factors that can be obtained in a careful NDIS experiment. It is important to note
that in modern neutron diffraction experiments it is usual to obtain the full set of Sαβ(q)

directly from the measured total interference functions by the application of equation (3.5),
i.e. additional constraints (see, e.g. Edwards et al (1975)) are not applied. The efficacy
of the procedure is then rigorously tested—see, e.g. Salmon and Petri (2003) for a recent
discussion.

When it is not possible to perform a sufficient number of NDIS experiments to resolve
the matrix for all the partial structure factors, some information can still be gained from
a limited number of experiments (e.g. Enderby et al (1973)). In the case of only two
experiments wherein the isotopic composition of only one chemical species x is varied, a
simple subtraction of the measured Fi(q) for samples 1 and 2 leads to a first-difference function
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Figure 8. Partial structure factors Sαβ(q) for liquid Ag2Se obtained via NDIS, from the data of
figure 7 (Barnes et al 1997). Figure reproduced with permission from IOP Publishing Limited
(Bristol).

(e.g. Eckersley et al (1988), Soper et al (1977)):

�x{1−2}F(q)
def= F1(q) − F2(q)

= c2
x(b

2
x1 − b

2
x2)[Sxx(q) − 1] +

n∑
α 
=x

2cαcxbα(bx1 − bx2)[Sαx(q) − 1], (3.6)

which contains only the partial structure factors involving atoms of chemical species x.
Alternatively, it is clear from equation (2.34) that a weighted subtraction of the two measured
Fi(q) can be used to eliminate any single partial structure factor, such as Sxx(q) or Sxy(q).
In addition, a weighted subtraction of a first-difference function �xF(q) from one of the
measured (total) Fi(q) eliminates all partial structure factors involving x except Sxx(q). Such
first-difference techniques can be useful for the study of, for example, modified network glasses
having three or more chemical species (Penfold and Salmon 1990). The relevant equations,
allowing for complex-valued scattering lengths, are given by Wasse et al (2000a).

Even complex systems such as clays are amenable to accurate NDIS studies (e.g. Powell
et al (1998)). Very dilute systems are also accessible if the scattering length contrast is
sufficiently high, as is the case for Ar dissolved in water where the substitution 36Ar/natAr
has been used (Sullivan et al 2001). The first-difference study by Wasse et al (2000b) on Li
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from Fourier transformation of the partial structure factors of figure 8 (Barnes et al 1997). Figure
reproduced with permission from IOP Publishing Limited (Bristol).

dissolved in ammonia is interesting in that the isotopic substitution was performed on all three
chemical species: H, Li and N.

By analogy with equation (2.40), we can Fourier transform �xF(q) to obtain the first-
difference function for samples 1 and 2 of the total pair-correlation function:

�x{1−2}G(r)
def= 1

2π2rρo

∫ ∞

0
q�x{1−2}F(q) sin(qr) dq

= c2
x(b

2
x1 − b

2
x2)[gxx(r) − 1] +

n∑
α 
=x

2cαcxbα(bx1 − bx2)[gαx(r) − 1] (3.7)

= G1(r) − G2(r).

For a liquid or glass having n > 2 chemical species, it is nevertheless possible to use a series
of only 3 NDIS experiments to determine the partial structure factor Sxx(q) corresponding
to one of the species x, through the technique of double-difference also called the second-
difference (e.g. Salmon et al (1998), Gaskell et al (1991), Enderby and Neilson (1981)). In
this procedure, only bx is varied among the 3 samples via isotopic substitution of x atoms.
A weighted subtraction of two first-difference functions leads to

�2
xF (q)

def= (bx2 − bx3)[�x{1−2}F(q)] − (bx1 − bx2)[�x{2−3}F(q)]

= c2
x[(bx2 − bx3)(b

2
x1 − b

2
x2) − (bx1 − bx2)(b

2
x2 − b

2
x3)][Sxx(q) − 1], (3.8)
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Figure 10. The partial structure factor SCuCu(q) and the difference functions �Cuµ(q) and �µµ(q)

for the four component chalcohalide glass (CuI)0.6(Sb2Se3)0.4, where µ denotes a matrix atom (Sb,
Se or I). In (a) the measured data points are represented by the circles, a spline fit to the data is given
by the dashed curve and a so-called minimum noise (MIN) solution (Soper et al 1993) is given
by the solid curve. In (b) and (c) the vertical bars represent the errors on the data points and the
solid curves give the MIN solutions. Note that the total interference function measured in a single
diffraction experiment has been resolved into its contributions from the Cu–Cu partial structure
factor and the two difference functions �Cuµ(q) and �µµ(q) that describe either the Cu–µ or µ–µ

correlations alone (see Salmon and Xin (2002)).

which can be solved for Sxx(q). The latter can then be used, along with the first-difference
functions, to produce other difference functions which involve linear combinations of Sxµ(q)

and Sµµ(q), where µ represents any type of atom other than x. In such a way 3 NDIS
experiments, by substituting on a single element x, can produce 3 difference functions (Sxx(q)

and combinations of the Sxµ(q) or Sµµ(q)) pertinent to structural studies of polyatomic systems
such as glasses (e.g. Salmon and Xin (2002), Benmore and Salmon (1994)). The results that
can be obtained are illustrated in figures 10 and 11 for the case of the chalcohalide glass
(CuI)0.6(Sb2Se3)0.4 where only Cu was isotopically substituted.

If 4 NDIS experiments are made when n > 2, it is then possible to resolve for any
partial structure factor Sxy(q) (where x 
= y) by taking a (possibly weighted) difference of two
first-difference functions, �x{1−2}F(q) and �x{3−4}F(q), thus producing a second-difference
function, where samples 1 and 2 have a different isotopic composition for species y than do
samples 3 and 4. For example, in the study of Pasquarello et al (2001) on the first solvation
shell of the Cu(II) aqua ion, a first-difference function involving Cu isotopes was taken for each
of the two aqueous solutions having different H/D ratios. These first-difference functions were
then combined to obtain gCuH(r). The results were compared with first-principles molecular
dynamics simulations.
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curves represent the Fourier transforms of either (a) the spline fitted SCuCu(q) or (b) and (c) the raw
reciprocal space data sets. The difference functions �GCuµ(r) and �Gµµ(r) describe either the
Cu–µ or µ–µ correlations alone where µ denotes a matrix atom (Sb, Se or I). Figure after Salmon
and Xin (2002).

All procedures for obtaining partial structure factors, Sαβ(q), from NDIS experiments
involve linear algebra. It should be recognized that these mathematical techniques are
numerically unstable and that it is very easy, if care is not taken, to obtain misleading results.
The SVD method discussed above (Press et al (1999) pp 59–70) is numerically stable and is
also more general in application. For a system of equations (i.e. diffractograms) that is over-
determined, SVD is formally equivalent to least-squares methods and will find the optimum
solution with the minimum error. In addition, for an under-determined system (e.g. in the case
of a double difference experiment), SVD produces the optimum solution for the sub-set of the
Sαβ(q) that can be obtained from the data as well as estimates of their errors, including the sign
of the error. It is therefore practical to employ SVD regularly to obtain the partial structure
factors from any set of diffractograms, irrespective of whether the system is over-determined
(all partial structures factors can be obtained) or under-determined (a sub-set of partial structure
factors can be obtained).

As certain elements (e.g. H, Ni, Cr, Dy) have isotopes that have both positive and negative
scattering lengths, it is possible to create isotopic mixtures for which bα = bcoh,α = 0. In
this case, for binary systems containing a ‘zero’ scattering element, the partial structure factor
of the other element can be measured directly in a single diffraction experiment. Enderby
and Barnes (1990) exploited the negative scattering length of 62Ni to obtain a zero mixture
of Ni isotopes in molten NiSe2 and thereby obtained the Se–Se partial structure factor from
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a single measurement. The ‘bcoh,α = 0’ technique has also been used to produce a ‘double
null’ amorphous alloy Dy7Ni3 (Hannon et al 1991, Wright et al 1985) for which bDy = 0 and
bNi = 0, i.e. the contribution to the diffractogram from nuclear correlations is removed, in
order to observe the scattering from the magnetic correlations alone.

A null average coherent scattering length can also be achieved if two chemical species,
one having a negative coherent scattering length and the other positive, are mixed such that
〈b〉 = c1b1 + c2b2 = 0. Ideally, the two chemical species would occupy the same sites in
the structure without any chemical correlation between those sites (i.e. the case of isomorphic
substitution, which is discussed below). In the case of the Ti–Zr ‘zero alloy’ used as a sample
container material in neutron scattering (e.g. for pressure cells), the substitution is not perfect
(i.e. the measured SCC(q) has some q-dependence) but the coherent scattering (e.g. Bragg
peaks) is greatly reduced.

In neutron diffraction experiments on aqueous solutions, it has been proved useful to use
‘null water’, consisting of approximately 2 parts H2O and 1 part D2O, for which the average
coherent scattering length of the Z = 1 sites is zero. The neutrons then ‘see’ only the oxygen
atoms of the water molecules—see, e.g. Powell et al (1989) for a study of NiCl2 in aqueous
solutions of D2O, H2O and null water. Note that the assumption is made that the H and D
isotopes exchange (i.e. substitute for each other) freely and without correlation. If there was
no exchange, the equilibrium concentration of HDO would be zero.

In general, hydrogen/deuterium or H/D substitution in neutron diffraction has become a
valuable and widely used technique for probing the Z = 1 environments of organic liquids,
especially at pulsed neutron sources where the inelasticity corrections can be made smaller
(except at small q) using higher incident energies, as compared with reactor sources. Of course,
care must be taken in H/D substitution experiments to know clearly the timescales of exchange
or non-exchange, between the Z = 1 sites on all the molecules in the sample. Apart from
questions of exchangeability at different sites, some recent studies have added qualifications
(discussed below) to the assumption that the structure of organic liquids is not appreciably
affected by deuteration. Since the structure of two classical systems of atoms interacting via
the same potentials, and at the same temperature and atomic density, should not depend on the
atomic masses (e.g. Egelstaff (1992) sections 5.3 and 8.4, Tomberli et al (2002, 2001c)), any
additional effects on the structure coming from H/D substitution are referred to as ‘quantum
effects’ or ‘quantum isotope effects’.

An analysis of quantum effects in water has been made by comparing high-energy x-ray
diffractograms of H2O and D2O for samples under ambient pressure and either at the same
temperature or at the same atomic density (Hart et al 2005, Badyal et al 2002, Neuefeind et al
2002, Tomberli et al 2000). They have also been studied by comparing the x-ray diffractograms
of D2O at the same density but two different temperatures about the density maximum (Bosio
et al 1983). All these experimental studies, supported by computer simulations (e.g. Kuharski
and Rossky (1985)), find evidence for quantum isotope effects in water (e.g. coming from
differences in ground-state motions for H and D), leading to differences in the structure
factors at the level of about 1%. As these structure factor differences often resemble those
produced by temperature differences, it has been suggested that H/D substitution experiments in
neutron diffraction may be improved somewhat by using appropriately different temperatures
for different isotopic samples (e.g. Tomberli et al (2002)).

In general, the large contrast in neutron scattering length between H and D leads to
differences in NDIS diffractograms that are comfortably larger than those arising from
isotope effects, especially if a temperature shift can be taken into account. Isotope effects
in H/D substitution have also been studied for liquid hydrogen (Zoppi 2003), liquid methanol
(Tomberli et al 2001a, 2001b, 2001c), liquid ethanol (Tomberli et al 2002), liquid benzene
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(Benmore et al 2001) and low-density amorphous ice (LDA) (Urquidi et al 2003). A short
review of quantum effects in hydrogenous liquids and glasses is given by Egelstaff (2002, 2003).

Apart from isotope effects, the measurement of (partial or total) structure factors for
hydrogen-containing systems is nevertheless experimentally difficult due to large inelasticity
effects and the large incoherent scattering from H in neutron diffraction and due to the low
electron density around hydrogen sites in x-ray diffraction (see section 4). These difficulties
are well illustrated in the case of water, where the partial structure factors determined via H/D
substitution in neutron diffraction were the subject of much debate (see, e.g. Soper (2000) for
a review), after some results showed discrepancies with certain computer simulations (Soper
et al 1997, Soper 1997, 1996b).

When appropriate isotopes do not exist or are too expensive for an NDIS study, it is often
possible to exploit the technique of isomorphic substitution, wherein similar chemical species
are substituted, rather than the different isotopes of a given species. One chooses two species
that are as chemically identical as possible, with nearly equivalent atomic radii, such that if a
sample is prepared using a mixture of both species, they substitute freely for each other without
chemical correlation. When appropriate samples can be reliably produced, and sufficient care is
taken, the results of isomorphic substitution experiments can be comparable to those of NDIS,
as illustrated by the study by Martin et al (2003a, 2003b). It is sometimes also possible to
obtain partial structure factors in neutron diffraction by controlling the relative orientations of
the atomic and neutron magnetic moments and thereby the total nuclear+magnetic scattering
length, for example, using polarized neutron diffraction (Schweizer (1982), see Blétry and
Sadoc (1975) for an application to amorphous Co0.834P0.166).

4. X-ray diffraction by liquids and glasses

The theoretical approach to x-ray diffraction by liquids and glasses was introduced and
developed by Zernicke and Prins (1929, 1927) and by Debye and Menke (1930). Some of
the earliest experiments performed on liquid water are reported by Bernal and Fowler (1933)
who employed impressively modern techniques of data modelling and interpretation. An x-ray
diffraction experiment on vitreous SiO2 and GeO2 was carried out by Warren (1934) using
an ‘evacuated camera’ and monochromatic Cu Kα radiation. Gingrich (1943) gives an early
but comprehensive review of x-ray diffraction by liquid elements. An accurate study of liquid
structure factors by x-ray diffraction was carried out by Kaplow et al (1965) on liquid lead
and mercury, and included a thorough discussion of the treatment of measurement errors. The
structure of simple liquids by x-ray diffraction was also discussed early on by Pings (1968),
while Narten and Levy (1971) made measurements on liquid water and, for example, Pálinkás
et al (1980) on aqueous solutions. Early x-ray diffraction studies on polyatomic glasses, using
Fourier transforms to obtain real-space functions, were performed by Leadbetter and Wright
(1972c) on germania and other binary glasses and by Renninger and Averbach (1973) on As–Ge
glasses. Both teams used data correction and analysis techniques developed principally by
Warren and Mozzi (1970, 1966), Kaplow et al (1965) and Norman (1957). All these studies
employed conventional ‘tube’ x-ray sources. Wright (1974) and Wright and Leadbetter (1976)
gave early reviews of glass structure studies that include x-ray diffraction.

Since x-ray diffraction measurements on liquids and glasses involve relatively weak
‘diffuse’ scattering, the continued development of high-flux, high-energy synchrotron x-ray
sources (Als-Nielsen and McMorrow 2001, Raoux 1993a) has significantly increased the
possibilities for such studies. The BW5 beamline (Bouchard et al 1998) at HASYLAB
in Hamburg exploits high-energy synchrotron x-rays to reduce absorption by the sample.
Neuefeind (2002) has reviewed high-energy x-ray diffraction on liquid samples, while,
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for example, Hoppe et al (2003) and Petkov et al (2000) present applications to glasses.
The ID1 beamline (Lequien et al 1995) at the European Synchrotron Radiation Facility
(ESRF) in Grenoble has been designed for anomalous x-ray diffraction (AXD), a technique
discussed in section 4.2. Synchrotron x-ray sources are also extensively used when only small
samples are available, e.g. liquid samples in pressure cells (Crichton et al 2001) or levitated
aerodynamically (Krishnan and Price 2000).

The technique of extended x-ray absorption fine structure (EXAFS) spectroscopy has
also benefitted from the high-resolution and variable energy range of synchrotron sources,
and although it is not a diffraction technique, it is becoming increasingly useful for structure
measurements (Gurman 1995), including liquids (Filipponi 2001). In general, EXAFS can
provide satisfactory results for simple (e.g. monatomic) liquids and glasses and is a sensitive
probe of small changes in structure (e.g. as a function of temperature). Diffraction techniques
are, however, generally more accurate for complex disordered systems and provide a more
extended r-range after Fourier transformation than does EXAFS.

4.1. Data treatment for x-ray diffraction

To obtain dσ/d� for a sample via x-ray diffraction, it is of course necessary to subtract
the scattering contributions from the background and sample environment, which are
generally larger than in the case of neutron diffraction, while taking into account very large
attenuation corrections (due to high x-ray absorption) and also multiple scattering corrections
(e.g. Fajardo et al (1998), Poulsen and Neuefeind (1995), Serimaa et al (1990)) that can be
significant for light elements and for high incident x-ray energies. In general, the corrections
and data analysis necessary to produce a proper S(q) or F(q) are more complicated and
difficult for x-ray diffraction as compared with neutron diffraction. One advantage is, however,
that the static approximation holds to a high degree of accuracy for x-ray diffraction, so no
corresponding corrections to the data are necessary. For details on the treatment of data from
conventional (tube source) x-ray diffraction studies of liquids and glasses, see for example
Magini (1988), Hajdu and Pálinkás (1972), Warren and Mozzi (1970), Levy et al (1966) and
Kaplow et al (1965). The experimental technique and data corrections for S(q) measurements
made using high-energy synchrotron x-rays (�50 keV), which have some advantages over
lower-energy x-rays, are discussed by Tomberli et al (2000), Weitkamp et al (2000) and
Poulsen et al (1995).

As discussed in the introduction, the scattering lengths for atoms in x-ray diffraction are
dependent on both the energy Eo of the incident photons (the so-called anomalous dispersion)
and the magnitude of the scattering vector q (due to the finite size of the electron clouds).
Recall that the effects of anomalous dispersion in neutron diffraction are more rare (Sinclair
1993, Cossy et al 1989). We adopt the convention of retaining the symbol b for scattering
lengths (units of femtometre) and using f for form factors (units of number of electrons). In
the case of x-rays, then, the atomic scattering length can be written as

b(q, Eo) = ref (q, Eo) = re[Zffalloff(q) + f ′(Eo) + if ′′(Eo)], (4.1)

where re = 2.818 fm is the classical radius of the electron also known as the Thomson scattering
length, f (q, Eo) the atomic form factor, Z the atomic number, ffalloff(q) the atomic form
factor’s modulation varying from 1 (q = 0) to 0 (q = ∞), and finally f ′ = �(fa) and f ′′ =
�(fa) are the real and imaginary parts of the ‘anomalous’ term fa(Eo) = f ′(Eo) + if ′′(Eo) of
the atomic form factor (electron units). Since the anomalous term involves inner core electron
clouds having small radii, its q-dependence is generally weak enough to be ignored. However,
the variation of the anomalous term near an absorption edge is considerably dependent on the
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chemical environment of the chemical species in question. In practice, f ′ is often determined
by applying a Kramers-Kronig relation (Kubo and Ichimura 1972) to theoretically extrapolated
absorption measurements (giving f ′′(Eo)) on the sample under study. Theoretical values of
f ′ and f ′′ at different energies and for different chemical species are given by Chantler et al
(2005), Gullikson (2001) and Chantler (2000, 1995). Atomic form factors are discussed
by Kissel and Pratt (1990, 1985) and have been tabulated for the elements (both neutral
atoms and chemically significant ions) by, for example, Maslen et al (1995 pp 476–505) and
Hubbell et al (1975). Zhou et al (1992) treat in particular the detailed structure of f ′ resulting
from near-edge structure in f ′′, and Kissel et al (1995) give a general assessment of certain
theoretical approximations to atomic form factors. A basic discussion of atomic scattering
factors, including numerical methods of calculation, is given by James (1962 chapter 3).
Figure 12 shows how f ′ and f ′′ vary near the K-edge of a Se atom (i.e. the absorption edge for
electrons in the K shell) and should be compared with figure 6 which shows an example of how
the real and imaginary parts of the neutron scattering length vary near a neutron absorption
resonance. Note that at x-ray energies far from an absorption edge, f ′′ is approximately
proportional to 1/E2

o or λ2
o, and at a fixed wavelength it varies approximately as Z4 across the

periodic table (e.g. Als-Nielsen (1993)).
As compared with neutron scattering, x-ray scattering involves additional inelastic

scattering and re-emission processes having significant cross-sections in the q-range of interest
for diffraction, as illustrated in figure 13 for the case of carbon atoms. These processes include
Compton scattering, fluorescence and resonant-Raman scattering, and they must be accurately
subtracted from the measured total differential scattering cross-section to obtain the ‘elastic’
or Rayleigh–Thomson differential scattering cross-section pertinent to diffraction:

[
dσ

d�
(q, Eo)

]total

X

=
[

dσ

d�
(q, Eo)

]Ray−T

X

+

[
dσ

d�
(q, Eo)

]fluo

X

+

[
dσ

d�
(q, Eo)

]r−Raman

X

+

[
dσ

d�
(q, Eo)

]Compton

X

+

[
dσ

d�
(q, Eo)

]other

X

, (4.2)

where the ‘other’ processes are only relevant at very high incident x-ray energy, Eo, as
shown in figure 13. Note that we show explicitly the q and Eo dependences of all the x-ray
differential scattering cross-sections. The Rayleigh–Thomson or x-ray diffraction differential
cross-section can then be written in the same way as in equation (2.32) for neutrons:

1

N

[
dσ

d�
(q, Eo)

]Ray−T

X

= F̃ (q, Eo) +
n∑
α

cαbα(q, Eo)b∗
α(q, Eo)

= F̃ (q, Eo) + b(q, Eo)2,

(4.3)

where again the average runs over all atoms in the sample. By convention, a tilde is superposed
for functions resulting from the use of x-ray rather than neutron scattering lengths. We remind
the reader that for reasons of consistency with neutron diffraction, the terms in the above
formulae have units of barn per steradian or femtometre squared per steradian (per atom), even
though x-ray diffraction data are often quoted in electron units.

In the q-range appropriate to atomic-scale diffraction, the incident energy Eo of x-rays
is very large compared with that of neutrons, so that only a small percentage of the
former is exchanged with atomic displacement energies, h̄ω, in the sample. In addition,
even when a crystal analyser is used, the energy resolution of detection is generally much
broader than the maximum energy exchange, h̄ωmax, so that the measured Rayleigh–Thomson
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Figure 12. Variation of f ′(Eo) (upper curve) and of f ′′(Eo) (lower curve) near the x-ray absorption
K-edge of Se, in electron units. The solid lines represent measurements (Barnes 2005) and
the dashed lines are theoretical calculations for an isolated atom that are consistent with the
Kramers-Kronig relations (Creagh and McAuley 1995, Cromer and Liberman 1970). Note that the
EXAFS oscillations in f ′′, which depend on the chemical environment of the Se atom, also have
a manifestation on the high-energy side of the dip in f ′.

differential cross-section effectively integrates S(q, ω) over all energy exchanges, assuring
the validity of the static approximation and making the associated inelasticity corrections
unnecessary.

For diffraction experiments at synchrotron sources, the nominal nearly complete horizontal
polarization of the incident beam (e.g. Raoux (1993a) pp 58–63) permits polarization effects
to be ignored in equation (4.3) for diffraction in a vertical scattering plane, as is commonly
practiced. For an un-polarized incident beam, as from an x-ray tube source, the polarization
factor (e.g. Cullity (1978))

P(θ) = 1 + cos2(2θ)

2
(4.4)
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Figure 13. Photon scattering cross-sections for carbon as a function of incident energy, plotted on
logarithmic axes. Here ‘tot’ is the total cross-section, ‘coh’ represents the Rayleigh–Thomson cross-
section and ‘incoh’ the Compton scattering. The absorption cross-section τ includes fluorescence
and resonant-Raman scattering and dominates for energies below 20 keV, above which Compton
scattering dominates until 20 MeV. The K-edge absorption is visible at 284 eV. The cross-sections
for photonuclear absorption (σph) and for pair-production in nuclear (κn) and electron fields (κe)
are significant only at very high energy. Figure from Kirz (2001).

must be taken into account when comparing measured and calculated x-ray diffraction
intensities (recall in figure 1 that 2θ is the scattering angle with respect to the incident beam).
A polarization correction must also be made for any diffracting element in the detector system
(again usually not necessary for synchrotron sources). Dwiggins (1983) has made a general
calculation of the polarization factor for any number of pre- and post-sample scatterers of any
orientation, while Vincent (1982) considers several special cases, and Lawrence (1982) has
analysed the case for a pyrolytic graphite monochromator. The latter functions as a mosaic
crystal and can be mounted downstream of the sample as an analyser, effectively translating
energy dispersion into angular dispersion, useful, for example, for monitoring fluorescence
intensity. De Bergevin (1999) incorporates the polarization factor into the definition of the
atomic scattering length for x-ray diffraction.

For incident x-ray energies at or above an absorption-edge energy Eedge (corresponding
to electrons in K, L or M shells), the photoelectric effect causes the ejection of an electron
after which the atom may de-excite radiatively via fluorescence (e.g. Krause (1979)) and emit
x-rays isotropically of energy Efluo < Eedge, or non-radiatively via the Auger process. Note
that in the case of K-edge absorption, the hole in the K shell can be filled either by relaxation
to the L shell, emitting an x-ray of energy Efluo,α = WK − WL, or to the M shell whereupon
Efluo,β = WK −WM , where Wi is the (positive) binding energy or work function for electrons in
the i shell (e.g. Eisenberger et al (1976))—see the energy level diagram of figure 14. Energies
for x-ray absorption edges and x-ray emission lines have been tabulated by Williams (2001) and
by Kortright and Thompson (2001), respectively, for almost all elements of the periodic table.

When the incident energy Eo is below but near Eedge (within a few tens of electronvolts
for K-edges), the x-ray can interact with a virtual electronic state of the atom and lose
energy, in a process known as resonant-Raman scattering, and then be re-emitted at energy
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Figure 14. Schematic of the atomic energy levels involved in K-edge absorption and resonant-
Raman scattering. In this case, Eedge = WK > 0 where zero energy is defined at the Fermi
level, EF . For Eo � Eedge, an electron in the K shell is ejected and subsequent atomic
relaxation from the L or M shells produces fluorescence, in which photons of constant energies
Efluo,α = Eedge −WL (Kα fluorescence) and Efluo,β = Eedge −WM (Kβ fluorescence) are emitted.
An incident photon of energy Eo < Eedge, insufficiently high for absorption, can nevertheless excite
the atom to a virtual state from which it relaxes to the L or M states by emitting a resonant-Raman
photon of energy ERα or ERβ , respectively. The shaded oval indicates that the resonant-Raman
excitation and relaxation processes form a single scattering event. Note that the energy of the
emitted resonant-Raman photon is shifted below Efluo by an amount �E = Eedge − Eo and
therefore depends on the incident energy Eo. As Eo approaches Eedge, the virtual state becomes
more active and the resonant-Raman intensity increases greatly. For clarity, the fine structure of
the atomic states is not shown. Note that elements of Z < 36 have no N shell.

ER < Efluo < Eo. Furthermore, as both Kα and Kβ fluorescence processes take place when
Eo is above a K absorption edge, there are both Kα (where Eo − ERα = WL) and Kβ (where
Eo − ERβ = WM ) resonant-Raman processes when Eo is just below the K absorption edge
(see figure 14). Note that in both cases, as Eo varies, it is the energy loss between the
incident and emitted photon that remains constant in resonant-Raman scattering, whereas
in fluorescence the emission energy is constant. The resonant-Raman energy loss serves
to eject an outer-shell electron, for example, an L shell electron in the case of the Kα

process. As Eo approaches Eedge, the interaction with the virtual state becomes more and more
probable, leading to a strong increase in the resonant-Raman intensity near Eedge (Bannett and
Freund (1975), Alexandropoulos and Cooper (1995) pp 577–8). Once the absorption edge is
attained, the energy of the re-emitted x-rays ER becomes equal to Efluo, for both Kα and Kβ

processes. Effectively, since resonant-Raman scattering is also isotropic, it can be thought of
as ‘anticipating’ fluorescence.

Although energy discrimination at the x-ray detector is usually sufficient to separate
fluorescence from the desired Rayleigh–Thomson intensity at energy Eo, the energy ER , at
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least in the case of Kβ resonant-Raman scattering, is generally too close to Eo and requires a
combination of a monocrystal analyser and collimation between the sample and detector to be
blocked. For example, Eo − ERβ = WM is only 53 eV for the K-edge of Fe at 7112 eV, and in
general (Eo − ERβ)/Eo ≈ 1% for the K-edges of the transition metals (Williams 2001).

In the method developed by Raoux (1993b) and co-workers (e.g. Armand et al (1993)),
the ratio of the Kα and Kβ fluorescence intensities is measured above the absorption edge,
where a solid state detector (or else a linear detector after a pyrolytic graphite analyser) can
easily discriminate these intensities from the elastic intensity. If one then assumes that the
ratio of the Kβ to Kα intensities remains roughly constant as a function of incident energy then
a measure of the resonant-Raman Kα intensity below the absorption edge allows an estimation
of the resonant-Raman Kβ intensity which can then be subtracted.

Compton scattering is essentially inelastic ‘billiard ball’ scattering of the x-ray photons
from quasi-free electrons in the sample. Its intensity depends on the initial momentum state (k)
of the electron as well as the incident x-ray energy. For an initially static (k = 0) electron
of rest mass, me, the energy loss (in terms of the wavelength shift of the scattered x-ray) is
given by

�λ = (λf − λo) = h

mec
[1 − cos(2θ)], (4.5)

where the incident energy Eo = hc/λo, and we ignore here the effects of binding energy.
In practice the Compton scattering spectrum shows a wide distribution around this energy
loss, due to the momenta of the bound electrons in the scattering atom (see upper plot of
figure 15).

It turns out that the differential scattering cross-section for Compton scattering,
[dσ/d�(q, Eo)]

Compton
X , in equation (4.2) (as obtained by integrating the Compton scattering

spectrum over final photon energies) for a given chemical species is more or less independent
of the incident energy, Eo. It is, however, an increasing function of q and at high-q tends
towards a value of b(q = 0, Eo)

2/Z ≈ Zr2
e , i.e. towards 1/Z of the self-scattering, provided

that final state effects are unimportant (Alexandropoulos and Cooper (1995) pp 576–7).
In experiments, however, the detector is not always ‘black’, i.e. it does not always have
a uniform efficiency for detecting final energy photons, and the Compton spectrum is not
uniformly integrated (see figure 16). The contribution of Compton scattering to the measured
intensity [dσ/d�(q, Eo)]total

X can therefore be strongly dependent on the energy response of the
detector—hence the Breit–Dirac correction which is often used for laboratory x-ray sources
(e.g. Warren (1990) p 12). In the free atom case, the Compton scattering contribution can be
calculated from tabulated cross-sections, binding energies and detector efficiencies. Pálinkás
(1973) has provided analytical approximations for calculating Compton intensities for elements
of Z � 20.

Oftentimes, Compton scattering can be eliminated from detection at high scattering angles
via moderate energy discrimination at the detector (e.g. by use of an analyser crystal placed
just upstream of the detector), but at small scattering angles it can be difficult to suppress
because its energy spectrum approaches closely the incident energy, Eo (e.g. Tonnerre (1989)).
This situation is somewhat alleviated for electrically insulating samples wherein a binding
energy must be surpassed before electrons can become ‘free’ and thereby subject to Compton
scattering, causing a small but convenient shift in the beginning of the Compton spectrum
away from the incident x-ray energy (particularly evident in the lower plot of figure 15 at about
17.598 keV, as compared with Eo = 17.61 keV). The use of a longer incident wavelength
(i.e. smaller incident energy) will push the constant-q features in a diffractogram out to larger
scattering angles (see equation (2.10)), but this does not help to separate the Compton scattering
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Figure 15. Compton scattering spectra, as a function of the final photon energy, for x-ray scattering
from Se atoms. Upper plot: incident energy Eo = 60 keV and detector angle 2θ = 70˚. Lower
plot: Eo = 17.61 keV and 2θ = 10˚. The discontinuities occur at electron binding energies. The
detector is assumed to have perfect efficiency. Calculations by Barnes (2005) using the theory of
Biggs et al (1975).

because equation (4.5) implies that a small Compton energy loss δE = Eo − Ef ∝ q2

is independent of Eo for a given q-value in the diffractogram. It can be useful to keep in
mind, nevertheless, the rather simple result for Compton scattering that both δE and the
differential scattering cross-section (obtained for a ‘black’ detector) are functions of q and
roughly independent of Eo.

The Warren–Mavel fluorescence detection method (Warren and Mavel 1965) for
eliminating Compton scattering from diffraction experiments has been adapted to synchrotron
sources by Bushnell-Wye et al (1992). At high x-ray energy and high q-values, the Breit–
Dirac approximation is no longer accurate, and the full relativistic expression of Klein and
Nishina (1929) should be used for calculating the Compton scattering cross-section (Poulsen
et al 1995). A thorough theoretical treatment of the Compton scattering of photons from bound
electrons is given by Bergstrom et al (1993), and Kane (1992) has given a review of Compton
scattering measurements.

As mentioned earlier, the use of high incident x-ray energies (i.e. 50–200 keV), as opposed
to lower energies, has some advantages for diffraction measurements on liquids and glasses. At
high energies the small wavelength permits diffraction to be performed at small angles, allowing
the use of a flat detector and reducing polarization corrections (Poulsen et al 1995), while
maintaining a high maximum q-value. In addition, the x-ray absorption is greatly decreased
at high incident energies, so that scattering becomes the dominant process, permitting sample
environments similar to those used for neutron diffraction experiments (see, e.g. Neuefeind
(2002), Badyal et al (2000)). Although the multiple scattering contribution to the diffractogram
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Figure 16. Effect of the detector energy response on the differential scattering cross-section for
Compton scattering, [dσ/d�(q, Eo)]

Compton
X , from a Li+ ion (Z = 2) at an incident energy Eo =

17.479 keV (i.e. Mo Kα1, λo = 0.709 26 Å). The dashed curve corresponds to an integration of
the Compton scattering spectrum over final photon energies, Ef , by a ‘black’ detector having a
uniform efficiency of detection. The solid curve shows the effect of applying a sharp cut-off to the
detector response at an energy Ef = Eo − 0.5 keV.

can become more important at high energies as absorption decreases (Fajardo et al 1998), most
of this contribution is from photons that are Compton-scattered at large angles and therefore
have large energy shifts that can be discriminated at the detector (Poulsen and Neuefeind 1995).

In summary, to properly perform x-ray diffraction on liquids and glasses it is necessary
either to block or subtract the unwanted contributions to [dσ/d�(q, Eo)]total

X so as to isolate
the Rayleigh–Thomson term. Note that there is no equivalent to vanadium, as used in neutron
diffraction, for normalizing x-ray diffraction intensities. Instead, an auto-normalization
technique can be used to fit the self-scattering at higher q-values, taking into account the
atomic form factors of the elements in the sample (e.g. Hoppe et al (2004)), a variant being
the ‘Krogh-Moe/Norman’ normalization technique (Norman 1957, Krogh-Moe 1956) which
employs the sum-rule of equation (2.44). In practice, it is in fact very difficult to calculate
accurately all the necessary corrections to x-ray diffraction data for a particular experimental
setup, and this inexorably leads to uncertainties in the structure factors S(q) or total interference
functions F̃ (q) that are obtained.

4.2. Anomalous x-ray diffraction (AXD)

As shown by equation (4.1) and discussed in section 4.1, the x-ray scattering length b(q, Eo)

for a particular chemical species exhibits variation close to an absorption-edge energy. The
technique of anomalous x-ray diffraction (AXD) (described by, e.g. Bienenstock (1993),
Fischer-Colbrie and Fuoss (1990) appendix 2.2, Warburton et al (1987), Waseda (1984))
consists of performing diffraction measurements on a single sample at several incident
energies Eo both near and far from absorption edges of atoms present in the sample. As
a general rule, one always works below the absorption-edge energy so as to reduce absorption
and to avoid EXAFS oscillations in f ′′ and especially in f ′ (see figure 12). Such experiments
are most conveniently performed at a synchrotron light source, offering highly monochromatic
beams over a wide range of x-ray energies.

The partial structure factor equations for NDIS can then be reformulated for a series of
m AXD experiments, where again m = n(n + 1)/2 diffraction experiments are necessary
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for a determination of all the partial structure factors of a sample having n chemical species.
The diffractogram of each AXD experiment yields a total interference function F̃i(q), and
equation (3.2) becomes

F̃i(q) =
n∑

α,β

cαcβbαi(q)b∗
βi(q)[Sαβ(q) − 1], (4.6)

where bαi(q) = bα(q, Eoi) is the scattering length of chemical species α for an incident x-ray
energy Eoi . Note that here we cannot ignore the imaginary part of the scattering lengths as we
did for NDIS. However, an isotropic system is effectively ‘centro-symmetric’ such that Friedel’s
law (e.g. Als-Nielsen and McMorrow (2001) pp 246–53, Sands (1993) pp 107–8) is satisfied,
i.e. F̃i(q) = F̃i(−q) in spite of the non-real scattering lengths. Provided Sαβ(q) = Sβα(q), as
given in equation (2.36), the weighting factors of the partial structure factors in equation (4.6)
are all real-valued.

Each F̃i(q) is obtained from the [dσ/d�]Ray−T
X term of equation (4.2) using equation (4.3)

after normalization and correction of the measured [dσ/d�]total
X for background, attenuation,

multiple scattering, fluorescence, resonant-Raman and Compton scattering, as discussed
earlier. For a binary system the matrix for AXD becomes (cf equation (3.3)):
F̃1(q)

F̃2(q)

F̃3(q)


 =




c2
x b2

x1(q) c2
y b2

y1(q) cxcy[bx1(q)b∗
y1(q) + by1(q)b∗

x1(q)]

c2
x b2

x2(q) c2
y b2

y2(q) cxcy[bx2(q)b∗
y2(q) + by2(q)b∗

x2(q)]

c2
x b2

x3(q) c2
y b2

y3(q) cxcy[bx3(q)b∗
y3(q) + by3(q)b∗

x3(q)]





Sxx(q) − 1

Syy(q) − 1
Sxy(q) − 1




≡

a11(q) a12(q) a13(q)

a21(q) a22(q) a23(q)

a31(q) a32(q) a33(q)





Sxx(q) − 1

Syy(q) − 1
Sxy(q) − 1


 (4.7)

that is,

[F̃ (q)] = [A(q)][S(q) − 1], (4.8)

which can be inverted to solve for the partial structure factors, Sαβ(q):

[S(q) − 1] = [A(q)]−1[F̃ (q)], (4.9)

where again b2 denotes bb∗ = |b|2. It is clear that each element aij (q) of the matrix is purely
real-valued (here normalized to units of barns). The q-dependent normalized determinant
|A(q)|n is calculated after dividing each row i of [A(q)] by

[∑
j a2

ij (q)
]1/2

.
The expression for a first-difference function (between x-ray energies Eo1 and Eo2) in

AXD for species x becomes

�x{1−2}F̃ (q)
def= F̃1(q) − F̃2(q)

= c2
x[b2

x1(q) − b2
x2(q)][Sxx(q) − 1] +

n∑
α 
=x

cαcx[bα(q)(b∗
x1(q) − b∗

x2(q))

+ b∗
α(q)(bx1(q) − bx2(q))][Sαx(q) − 1]. (4.10)

However, since the imaginary part of x-ray scattering lengths cannot in general be ignored,
an exact solution for a double-difference in AXD does not exist for n > 2 chemical species
when only three F̃i(q) are measured, i.e. it is not possible to take a weighted difference of two
AXD first-difference functions that cancels all the Sαx(q) where α 
= x. For a binary system
(n = 2) of species x and y, the exact expression for a double-difference function in AXD is
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given by

�2
xF̃ (q)

def= [by(q)(b∗
x2(q) − b∗

x3(q)) + b∗
y(q)(bx2(q) − bx3(q))][�x{1−2}F̃ (q)]

− [by(q)(b∗
x1(q) − b∗

x2(q)) + b∗
y(q)(bx1(q) − bx2(q))][�x{2−3}F̃ (q)]

= c2
x[Sxx(q) − 1][by(q)[(b∗

x2(q) − b∗
x3(q))(b2

x1(q) − b2
x2(q))

− (b∗
x1(q) − b∗

x2(q))(b2
x2(q) − b2

x3(q))] + b∗
y(q)[(bx2(q) − bx3(q))

× (b2
x1(q) − b2

x2(q)) − (bx1(q) − bx2(q))(b2
x2(q) − b2

x3(q))]]. (4.11)

Note that this expression, which can be solved for Sxx(q), includes the scattering length
by(q), which is not the case for the NDIS double difference of equation (3.8) wherein the
scattering lengths are assumed to be real-valued. Note also that the coefficients of the
partial structure factors Sαβ(q) and the measured intensity differences �xF̃ (q) are real-
valued in equations (4.7), (4.10) and (4.11) since they can be re-written as, for example,
f1f

∗
2 + f ∗

1 f2 = 2(f ′
1f

′
2 + f ′′

1 f ′′
2 ) where f1 = f ′

1 + if ′′
1 and f2 = f ′

2 + if ′′
2 are two complex

numbers.
A fundamental difference between equations (4.10) and (4.11) for AXD and those for

NDIS is that for AXD we must assume that the bα(q) and by(q) of the α and y atoms (where
α, y 
= x) do not change very much near an absorption edge of species x, whereas in NDIS it
is generally true that isotopic substitution of species x does not affect the neutron scattering
lengths of other species in the prepared samples. In addition, f ′ and f ′′ for a given chemical
species in a liquid or glass depend on the immediate chemical environment (e.g. Bienenstock
(1993)), producing a correlation between local structure and scattering length for that chemical
species. This correlation is implicitly assumed to be non-existent in the definition of the total
interference function given by equation (4.6) and is reduced, in experiment, by working with
incident x-ray energies below the absorption edge (see figure 12). Chihara (1987) has shown
that both the atomic form factors and Compton scattering are different for an atom in metallic
versus non-metallic states. Finally, the Fourier transforms of the AXD equations (4.6) and
(4.10) do not result in linear combinations of the gαβ(r), as is the case for the G(r) obtained
through neutron diffraction in equations (2.40) and (3.7), because x-ray scattering lengths
are q-dependent. It is however useful to define an ‘x-ray modified’ total pair-correlation
function G̃(r) as the Fourier transform of the corresponding total interference function F̃ (q)

and thereby a real-space first-difference function �xG̃(r) for anomalous dispersion performed
on species x:

�xG̃(r)
def= 1

2π2rρo

∫ ∞

0
q�xF̃ (q) sin(qr) dq, (4.12)

which converges to zero at large r . Narten and Levy (1972) have shown that x-ray modified
partial pair-correlation functions g̃αβ(r), obtained by the Fourier transformation of each term
in equation (4.6), are related to the true pair-correlation functions gαβ(r) via convolution by
known functions involving the average breadth of the atomic electron density distribution.
Note, however, that in a double difference experiment a full correction is made for the q-
dependent scattering lengths (see equation (4.11)) and the true partial structure factor, Sxx(q),
is obtained directly.

The AXD approach to partial structure factor determination was originally suggested by
Krogh-Moe (1966), and the idea was developed and extended to anomalous neutron diffraction
by Ramesh and Ramaseshan (1971a, 1971b). Bondot (1974) used x-ray wavelengths from
two tube sources (Cu Kα and Ag Kα), combined with a neutron diffractogram, in an effort to
derive the partial pair-correlation functions of amorphous GeO2. Some of the earliest AXD
synchrotron experiments were carried out by Fuoss et al (1981, 1980) on amorphous GeSe2
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Figure 17. Corrected and normalized difference �YF̃ (q) for a 3.5 molal YCl3 aqueous solution
obtained via AXD at the Y (yttrium) K-edge. The dashed line represents the back Fourier transform
of the (edited) �YG̃(r) curve shown in figure 18 and thereby gives an estimate of the accuracy of
the experimental data. Figure from Ramos et al (2001) and reproduced with permission from the
American Chemical Society.

and GeSe. The AXD technique is particularly valuable for the study of GeSex glasses or liquids
since Ge (Z = 32) and Se (Z = 34) have nearly the same nominal x-ray scattering length.
The scattering length contrast is therefore greatly increased by using an incident energy just
below the K-edge of Ge or Se. See for example the results of Hosokawa (2001) on GeSex

glasses, Fischer–Colbrie and Fuoss (1990) on amorphous GeSe2 and Armand et al (1993) on
GeSe3 and GeSe5 glasses.

Ludwig et al (1987a) compared AXD and EXAFS results on concentrated metal bromide
aqueous solutions. Their thorough study on liquid GeBr4 (Ludwig et al 1987b, 1987c)
concluded that high accuracy in AXD depends on a cancellation of systematic errors when
subtracting data sets taken at two nearby incident photon energies. The Munro (1982) method
uses differences to determine the partial pair-distribution functions (PDFs) from AXD data
obtained at a total of 5 incident energies, and hence takes advantage of the cancellation of some
systematic errors. Note, again, that in these fully constrained or over-constrained methods, the
effect of the q-dependent scattering lengths is removed and the true partial structure factors
are obtained.

Some AXD experiments and analyses by Ramos et al (2000) have determined the hydration
structures of Br− and Rb+ ions in concentrated aqueous solution by combining first-difference
functions from x-ray energies near and far from both the Br− K-edge and the Rb+ K-edge. The
same group has obtained good results for YCl3 aqueous solutions using anomalous dispersion
at the Y (yttrium) K-edge (Ramos et al 2001), as shown in figures 17 and 18. The Munro
(1982) method, as well as the SVD numerical technique discussed earlier, was employed by
Burian (1998) to obtain the partial structure factors of amorphous Cd-As films by AXD.

Rather than being limited by the availability of isotopes as in NDIS, the AXD technique
is constrained by the existence of absorption-edge energies Eedge for the atoms in the sample
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Figure 18. Real-space first-difference function �YG̃(r) obtained by Fourier transformation of
the data in figure 17. The dashed line was obtained from a best fit to the q-space experimental
data when a cut off is applied to �YG̃(r) in the region between 0 and 1.96 Å. The dashed line in
figure 17 represents its back Fourier transform. Figure from Ramos et al (2001) and reproduced
with permission from the American Chemical Society.

that are at once accessible and high enough to give a good maximum wavevector transfer
qmax = 4πEedge sin θmax/hc, where 2θmax is the maximum scattering angle. To obtain a
gαβ(r) with sufficient resolution in r-space via the Fourier transformation of a measured
Sαβ(q), a range of at least 10 Å−1 in q is generally necessary, corresponding to Eedge � 10 keV.
For structural studies of glasses, especially those having covalent bonds (e.g. oxide glasses)
which lead to well-defined interatomic distances, a maximum q of at least 20 Å−1 is generally
desirable. The elements having absorption energies between 10 and 50 keV (the latter being
the highest commonly available at 3rd-generation synchrotrons) vary from Ga (Z = 31) to
Gd (Z = 64) for the K-edge and from Tm (Z = 69) to U (Z = 92) for the L-edge (which
offers a weaker variation in f ′ than for the K-edge). We see therefore that AXD is a technique
best exploited for elements of Z > 30 (see figure 19).

When absorption edges are not at appropriate energies, one can also employ isomorphic
substitution in x-ray diffraction, as mentioned in section 3.2 for neutron diffraction. The study
by Skipper et al (1989) concluded that the Mg2+ and Ni2+ ions are sufficiently isomorphic,
in concentrated aqueous chloride solution, to provide useful information on their hydration
environment. Powell (1989) has pointed out, however, that care must be taken that the
differences in the water–water partial structure factors between the 2 samples are smaller than
those coming from the scattering length contrast, which can be more problematic for neutron
diffraction with isomorphic substitution where the water–water contributions are generally
weighted more strongly than for x-ray diffraction.

For high-Z elements, the scattering length contrast offered by AXD is generally
comparable to or higher than that for NDIS. The convenience of using a single sample in AXD
is countered by the considerably greater difficulty in data analysis as compared with NDIS.
As mentioned earlier, the energy dependence of f ′ is not easily determined experimentally
nor theoretically and depends as well on the chemical environment of the atom. In addition,
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Figure 19. Periodic table showing those elements for which NDIS has already been performed
(positive slope solid lines), as well as those having K (negative slope solid lines) and L (negative
slope dashed lines) absorption edges between 10 and 50 keV.

for x-ray diffraction it is necessary to subtract or eliminate the fluorescence, Compton and
resonant-Raman intensities (none of which are present in neutron scattering) and to correct
for attenuation effects (scattering and absorption) that are in general significantly larger than
for neutron diffraction measurements. Finally, the q-dependence of the scattering lengths in
AXD first-difference functions (see equation (4.10)) leads, after Fourier transformation, to
r-space resolution that is generally poorer as compared with neutron first-difference functions
(see equation (3.6)). Nevertheless, AXD offers an oftentimes valuable alternative and some
useful complementarity to NDIS.

5. Combined neutron and x-ray diffraction

As neutron scattering lengths depend on nuclear mass and the strong interaction (the theory of
quantum chromodynamics or QCD), whereas x-ray scattering lengths depend on the number
of electrons and the electromagnetic interaction (the theory of quantum electrodynamics
or QED), the two are a priori uncorrelated across the Periodic Table, as illustrated in
figure 20. A combination of the two diffraction techniques therefore offers good possibilities
for increasing the contrast between measured Fi(q) in the determination of partial structure
factors, Sαβ(q). The matrix expressing the Fi(q) as functions of the Sαβ(q) will then contain
q-independent neutron (N) rows coming from equation (3.2) and q-dependent x-ray (X) rows
from equation (4.6), the ensemble becoming therefore q-dependent.

5.1. Advantages for partial structure factor determination

The combined use of the two techniques therefore permits one to exploit not only two types
of scattering lengths (as illustrated in figure 20) for each element in the sample but also two
independent ways of varying the scattering lengths (NDIS and AXD). This versatility is central
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Figure 20. Coherent scattering lengths for x-rays (ref ) and neutrons (b) as a function of atomic
number. Note the dependence on q ∝ sin θ/λo for x-rays but not for neutrons. Figure after Bacon
(1975).

to the effective complementarity of neutron (N) and x-ray (X) diffraction for the determination
of the Sαβ(q) and thus the gαβ(r) for a polyatomic liquid or glass. Although the addition of
an x-ray diffractogram can lead to a greatly increased contrast in H/D substitution studies,
such as for water (e.g. Fischer et al (2003) pp 383–5), we prefer to illustrate the advantage
of combining N and X diffractograms for a higher-Z system which allows for ‘cleaner’ x-ray
diffraction measurements.

The study of liquid TlSe by Barnes et al (1998) offers an excellent example of the utility
of combining an x-ray diffractogram with a NDIS determination of partial structure factors.
The electron density distributions of Tl and Se are quite spherical, and the relatively high
mass and medium Z of these elements lead to small inelasticity corrections for neutrons and a
low Compton intensity for x-rays, respectively. In this case, therefore, 2 neutron and 1 x-ray
diffractograms (2N + X) can be combined quite accurately to derive partial structure factors.

Let us first review the results for standard NDIS applied to liquid TlSe, where the
3 samples measured by neutron diffraction have isotopic compositions of natTlnatSe, 205TlnatSe
and 203Tl76Se (where ‘nat’ indicates the natural isotopic composition). After all the corrections
are applied, the 3 Fi(q) so obtained have an ‘NDIS’ matrix of


nat
natF(q)

205
nat F(q)

203
76F(q)


 =


0.2749 0.2263 0.4988

0.2968 0.2072 0.4960
0.1327 0.4042 0.4631





STlTl(q) − 1

SSeSe(q) − 1
STlSe(q) − 1


 , (5.1)

which gives a very small normalized determinant |A|NDIS = 0.005, in spite of the combination
of isotopes being nearly optimal for TlSe. Even though the Barnes et al (1998) study used
a very precise liquids diffractometer (D4b at ILL), the NDIS-only partial structure factors
are barely discernable over the statistical noise, as shown in figure 21. Note that the matrix
elements mentioned above are normalized such that

∑
j aij = 1. It is thus clear that there is not

much contrast between the natTlnatSe and 205TlnatSe samples since their matrix rows contain
very similar values.
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Figure 21. Partial structure factors, Sαβ(q), for liquid TlSe obtained via NDIS only, using 3 samples
of different isotopic compositions. The statistical noise indicates the spread in data points.
Figure from Barnes et al (1998) and reproduced with permission from IOP Publishing Limited
(Bristol).

The nat–nat sample’s neutron diffractogram was then replaced by an x-ray diffractogram
taken at an incident energy of Eo = 38 keV. The ‘2N + X’ matrix becomes q-dependent and
at q = 5 Å−1 is given by


XF̃ (q)

205
nat F(q)

203
76F(q)


 =


0.5184 0.0784 0.4032

0.2968 0.2072 0.4960
0.1327 0.4042 0.4631





STlTl(q) − 1

SSeSe(q) − 1
STlSe(q) − 1


 , (5.2)

where the normalized determinant |A|2N+X = 0.088 is a factor of 17 larger than |A|NDIS. This
exceptionally good contrast results in an inverse matrix at q = 5 Å−1 given by


STlTl(q) − 1

SSeSe(q) − 1
STlSe(q) − 1


 =


−5.625 1.983 4.643

−8.290 6.105 3.184
8.846 −3.737 −4.109







205
nat F(q)

203
76F(q)

XF̃ (q)


 , (5.3)

which has small-valued elements and therefore gives a precise and robust determination of the
Sαβ(q) (figure 22) and finally the gαβ(r) via Fourier transformation (figure 23).
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Figure 22. Partial structure factors, Sαβ(q), for liquid TlSe obtained from a 2N + X experiment,
i.e. combining 2 neutron diffractograms for samples having different isotopic compositions with 1
x-ray diffractogram. Figure from Barnes et al (1998) and reproduced with permission from IOP
Publishing Limited (Bristol).

5.2. Difficulties in combining neutron and x-ray diffractograms

In general, the combination of neutron and x-ray diffractograms engenders several new
difficulties in the data analysis. In particular, certain systematic errors of measurement will
no longer ‘cancel out’ through subtractive linear combinations in the matrix, as can be the
case for diffractograms coming from a single technique—for example, the inelasticity effects
for neutron diffraction from ionic solutions in heavy water will cancel to a large extent in
the first difference obtained via isotopic substitution of a dissolved ion (Soper et al 1977).
When combining the results from x-ray and neutron diffraction, however, it is necessary
to correct, in absolute and not just in relative terms, the measured differential scattering
cross-sections [dσ/d�]N and [dσ/d�]X sufficiently well that residual systematic errors are
much smaller than the differences between them—i.e. much smaller than the contrast. For
example, the subtraction of the diffraction intensity measured for the container and sample
environment, as well as any other background intensity, must be made very accurately when
N and X diffractograms are combined.

In addition, an accurate absolute normalization of the measured dσ/d� (in barn per
steradian) is required, a task that is especially difficult in the case of x-rays. It may also
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Figure 23. Partial pair-distribution functions, gαβ(r), for liquid TlSe obtained from a 2N + X
experiment, after Fourier transformation of the curves fitted to the partial structure factors of
figure 22 (Barnes et al 1998). Figure reproduced with permission from IOP Publishing Limited
(Bristol).

be necessary to confirm that equivalent parts of the sample are probed by both techniques,
x-rays having shorter extinction lengths and therefore being more surface-sensitive. Finally,
the difference in the q-space resolution of neutron diffractometers (Finger et al 1994, van Laar
and Yelon 1984, Caglioti et al 1960, 1958) and x-ray diffractometers (almost always more than
sufficient for liquid and glass diffraction studies) requires consideration before the measured
Fi(q) from the two techniques can be put into the matrix. Oftentimes, the x-ray q-space data
can simply be convolved with the poorer neutron-diffraction resolution function, as was the
case in the liquid TlSe study of Barnes et al (1998). Alternatively, a modulation can be applied
to the neutron-diffraction r-space results that takes into account the convolution of the structure
factor with the instrument resolution function in q-space.

Aside from the above experimental difficulties in combining N and X diffractograms,
one should remember that any significant non-sphericity of the atomic electron densities
in the sample will invalidate the assumption of isotropy of the atomic form factor’s
modulation ffalloff(q) in equation (4.1). For example, molten covalent systems can have strong
directional bonds carrying significant electron density between the atomic centres. For a
metallic liquid, the x-ray scattering from the conduction electrons may need to be taken into
account (e.g. Salmon et al (2004)). In some of these cases the electron density will no
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longer have spherical symmetry around the nucleus, meaning that x-rays and neutrons will no
longer diffract from the same set of scattering centres, and will therefore be measuring slightly
different structures.

A good example concerns the partial structure factors of water, where most of the electron
density of the Z = 1 sites has been ‘absorbed’ by the oxygen orbitals (e.g. see Badyal et al
(2000) for a comparison of neutron and x-ray diffractograms for water). In addition, the factor
of two difference in mass between H and D leads to subtle structure differences, including
quantum effects, which are discussed in section 3.2. The neutron diffractograms for samples
containing H will also be subject to large incoherent scattering as well as significant inelasticity
corrections. Finally, due to the low atomic number Z = 1, the x-ray diffractograms will have
a high percentage contamination by Compton scattering whose contribution is difficult to
calculate since it is dependent on the complex nature of the O–H covalent bond.

The high contrast inherent in a 2N+X diffractogram combination may be larger than the
residual systematic errors in the case of water and other systems where H/D substitution is
used, but care must be taken in the data analysis and in the interpretation of the results. As an
example of the contrast enhancement (recall that no appropriate oxygen isotopes are available
for NDIS), consider the case of 3 NDIS samples for water using H/D substitution (0% H,
20% H and 40% H) for which |A|NDIS = 0.0236 (a typical value), as compared with a 2N + X
experiment (0% H and 20% H content for the neutron diffractograms and 100% H content for
the x-ray diffractogram) for which |A|2N+X = 0.159 is a factor of 7 larger.

Although not really concerned with diffraction from liquids and glasses, the book edited
by Furrer (1998) gives a pedagogical presentation of the complementarity between neutron
and synchrotron x-ray scattering. Gurman (1990) has discussed the limitations of combining
different data sets (from neutron diffraction, x-ray diffraction and EXAFS) for the accurate
determination of partial structure factors.

5.3. Some studies to date

Other than the study on amorphous GeO2 by Bondot (1974) mentioned in section 4.2, one of the
earliest attempts at combining neutron and x-ray diffraction results to obtain a partial structure
factor, that of S–S in liquid CS2, was carried out by Orton (1977), who did not use NDIS or AXD
but made a few reasonable assumptions in order to eliminate the C–C partial structure factor.
A recent study on liquid Ga2Te3 (Buchanan et al 2001) combined NDIS and AXD (K-edge
of Te), producing 3N+2X or 5 diffractograms which were combined in an over-determined
application of singular value decomposition (SVD) (Press et al (1999) pp 59–70), to give
the full set of 3 partial structure factors. The study by Skipper and Neilson (1989) combined
NDIS (using 107Ag and 109Ag) with isomorphic substitution in x-ray diffraction (using Ag+ and
Na+) for concentrated aqueous solutions of AgNO3 and NaNO3. Results for first-differences
and partial structure factors have also been obtained for covalent glasses and amorphous
semiconductors by combining N and X diffraction (Sampath et al 2003, Barnes et al 1999). In
the case of a liquid metal, the system may be regarded as a binary mixture of ions and valence
electrons (Chihara 1987). Neutron and x-ray diffractograms can then be combined, under
favourable conditions, to measure the ion–ion and ion–valence electron partial structure factors
together with the valence electron form factor—see Salmon et al (2004) for a recent overview.

Even if not used to determine partial structure factors, the comparison of neutron and x-ray
diffractograms (with theory and/or with each other) for the same system can aid considerably
in the interpretation of the total pair-correlation functions (coordination numbers, etc), as
each technique will typically be sensitive to different atoms. Early work in this and related
areas includes that of Henninger et al (1967a, 1967b) on amorphous selenium and vitreous
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silica, respectively, that of Narten (1976, 1972a, 1972b) on liquid CCl4, water and gallium,
respectively, and that of Leadbetter and Wright (1972a) on vitreous BeF2 and other binary
glasses. Such dual-beam (X+N) studies have been particularly useful for polyatomic oxide
glasses (e.g. Benmore et al (2003), Johnson et al (2003), Hoppe et al (2004, 2001, 1998),
Karabulut et al (2000)) and for some aqueous solutions (e.g. Bakó et al (1999), Andreani and
Petrillo (1987)), molecular liquids (e.g. Bellissent-Funel et al (1997), Bertagnolli and Zeidler
(1978)) and liquid alloys (e.g. Neumann et al (1991)).

In addition to combining or comparing N and X data sets in terms of normalized and
corrected data sets, the technique of reverse Monte Carlo (RMC) (discussed in section 6)
can be employed to generate the theoretical neutron and x-ray diffractograms from a three-
dimensional structural model. The procedure can incorporate, for example, effects from the
finite-width of the resolution function and from the finite q-range accessible to a diffractometer,
and the simulated data are compared iteratively with the experimental results so as to refine
the three-dimensional model of the system under study (McGreevy 2001, 1990).

In conclusion, the combination of neutron and x-ray diffractograms has the advantages of
increased contrast as well as accessibility to a larger number of elements in the determination
of partial structure factors, as compared with using NDIS or AXD alone. Figure 19 shows
those elements for which NDIS has already been performed (i.e. those for which isotopes have
scattering lengths with sufficient contrast but which are not too expensive—see also Enderby
(1993)), as well as those having K and L absorption edges appropriate for AXD. It is clear that
many elements not available to one technique are available to the other, whence the advantage
of combining the two. However, more progress can be made in improving the experimental
techniques and data analysis methods used to combine neutron and x-ray diffractograms,
especially for systems containing low-Z elements.

6. Beyond the determination of partial structure factors and pair distribution functions

Until the mid 1980s the interpretation by experimentalists of structure data for liquids and
glasses was largely based on interatomic distances observed as peaks in g(r) and the mean
coordination number obtained by integration of g(r) between appropriate limits. Three-
dimensional local structures and bonding schemes were then inferred from these data, often by
comparison to known crystal structures of the same or similar stoichiometry. Since that time,
the availability of high-speed computers has improved the accessibility and has extended the
range of methods that are used. These fall into two basic categories: (1) modelling of the system
by Monte Carlo, molecular dynamics or integral equation methods followed by a comparison of
the calculated structures with the experimental data and (2) ‘fitting’ three-dimensional models
of the system to the data, by means of iterative structure refinement methods. All these methods
are now readily available to the experimentalist.

Some of the early work using computer simulation and integral equation methods, on
systems which include Lennard-Jones liquids (Yarnell et al 1973), liquid metals (Cusack
1987), molten salts (Sangster and Dixon 1976, Parrinello and Tosi 1979, Rovere and Tosi
1986) and aqueous solutions (Impey et al 1983), is described elsewhere.

6.1. Monte Carlo and molecular dynamics simulation

The modelling of liquid structure by Monte Carlo, molecular dynamics or integral equation
methods (such as the hypernetted chain or Percus Yevick method) is now well established. In
each of these methods the interactions between the atoms in the material are described in the
form of interatomic (usually pair) potentials. For a full description of the methods and their



286 H E Fischer et al

advantages and disadvantages the reader is referred to the books by Egelstaff (1992), Hansen
and McDonald (1990), Allen and Tildesley (1987) and Cusack (1987).

There are now a large number of computer programs generally available that exploit
these methods. Similarly a large number of interatomic potentials are widely available in
the literature. Hence it is now within the easy grasp of experimentalists to attempt basic
computer simulations of simple systems for comparison with experimental results—indeed the
comparison with experiment is an important test of the reliability of the potentials. However,
in all but the simplest systems it is apparent that methods based on simple pairwise potentials
do not give good agreement with the data—see for example the study on liquid Ag2Se by
Barnes et al (1997) or the use of a polarizable-ion model as opposed to a rigid-ion model for
molten DyCl3 (Takagi et al 1999) and other MCl3 systems (Hutchinson et al 2001, 1999).

Over the last decade (1990s), theoretically more complex methods have been developed
including Ab Initio Molecular Dynamics (Car and Parrinello 1988, 1985) and Quantum Monte
Carlo (e.g. Allen and Tildesley (1987) chapter 10) methods that attempt to simulate the structure
using first-principles quantum mechanical calculations that avoid the need to calculate pair
potentials in advance. However, they are computationally intensive and at the present time the
calculations are limited at most to a few hundred atoms, and by consequence their agreement
with experiment can be poor in the low-q region of the data. In addition, even ab initio
techniques still require some choice in terms of, for example, the density-functional, and this
can affect the results (Massobrio et al 1999). Overall, it still remains a difficult theoretical
challenge to simulate the structure of liquids, and it is clear that high-quality experimental data
are a stringent test of the reliability of these methods. In the case of the simulation of glasses
the situation is even more complicated due to the non-equilibrium nature of the systems and the
difficulty of ‘quenching’ liquids sufficiently slowly in the simulations to form glass structures
comparable to those found in nature (e.g. Kob (2003)).

6.2. Structure refinement

In the 1980s the idea of carrying out a computer refinement of atomistic three-dimensional
structural models of liquids and glasses (and other disordered materials) was established. This
idea developed in part from original work using ‘inverse’ Monte Carlo methods applied to
glasses by Kaplow et al (1968) and Renninger et al (1974) and to disordered substitutional
alloys by Schweika and Haubold (1988) and Gerold and Kern (1987). At the current time there
are two principle methods that are in common use: the reverse Monte Carlo (RMC) method
(McGreevy 2001, 1995, McGreevy and Pusztai 1988) and the empirical potential structure
refinement (EPSR) method (Soper 2001, 1998, 1996a).

In both methods an initial atomistic three-dimensional model of the liquid or glass in
question is created in the computer. The partial pair-distribution functions and/or partial
structure factors are then calculated from the computer model and compared with the data.
The computer model is then refined until the model data agree sufficiently well with the
experimental data. The intention, at the end of the refinement procedure, is that the computer
model is a good representation of the actual atomic structure in the liquid or glass.

6.2.1. Reverse Monte Carlo. The RMC method is based on the Metropolis Monte Carlo
method (Metropolis et al 1953) and involves the successive movement of individual atoms in
the simulated structure while a comparison with the measured structure is made in terms of
a χ2 fit to the data. If, as a result of a given move, an improvement in χ2 is obtained, the
move is accepted. If there results a worsening of the fit, the move is accepted according to a
certain probability (analogous to a Boltzmann factor in a conventional Monte Carlo simulation).



Neutron and x-ray diffraction studies of liquids and glasses 287

Eventually χ2 will reach a stable value, and the structures obtained after additional successive
moves are averaged to produce the final refined structure.

An advantage of the RMC method is that it is comparatively easy to use and the program
is readily and freely available. In addition, data sets from different techniques (e.g. diffraction,
EXAFS, NMR, etc) can be ‘fitted’ simultaneously while respecting quantitatively their different
experimental errors. Furthermore it is relatively easy to build extra constraints into the refined
model by, for example, adding coordination number constraints obtained from, e.g. NMR
methods, or requiring the model to have agreement with local atomic arrangements known
from, e.g. EXAFS measurements. A disadvantage is that it is difficult to build in molecular
structure to the model apart from using rather crude constraints that risk trapping the simulation
in local minima (see section 6.2.2).

RMC has been used to analyse NDIS data for a number of systems, including superionic
conductors (Keen 2002), molten salts (McGreevy and Pusztai 1990, Pusztai and McGreevy
1998), ionically conducting glasses (Cormier et al 1998, Lee et al 1993), a titanosilicate glass
(Cormier et al 1997), mixtures of binary molten salts (Badyal and Howe 1996), metallic glasses
(Lamparter 1995, Pusztai and Svab 1993) and ions in aqueous solution (Howe 1990), among
other examples. Also RMC can straightforwardly take into account the magnetic form factor
of particular atoms when necessary (see e.g. Keen et al (1995) for amorphous Dy7Ni3).

The fact that partial structure factors obtained via an RMC analysis must be consistent with
a 3-dimensional model is an added check on the viability of the results, and in this way, among
others, RMC serves to eliminate non-physical solutions, even if they had been viable numerical
solutions for partial structure factors (e.g. Pusztai and McGreevy 1998). More generally, for
multiple data sets, RMC can be effective in identifying which data set (or sets) has significant
systematic errors or whether as a whole the data sets are mutually consistent. It is interesting
to note that an integral equation method for combining different types of data sets to derive
partial structure factors, without producing a 3-dimensional model, was presented by Babanov
et al (1986).

As suggested by McGreevy (1990), neutron and x-ray diffractograms can be combined
using RMC for the determination of partial structure factors. This has been carried out for
molten salts (Pusztai and McGreevy 2001) and vitreous silica (Keen and McGreevy 1990),
among other systems. Wicks and McGreevy (1995) and McGreevy (1993) have discussed the
combination of neutron, x-ray and EXAFS structure data for modelling liquid and amorphous
materials, and the method has been applied to ionically conducting glasses by Swenson et al
(1998) and Wicks et al (1995, 1993).

For information on recent applications of RMC modelling (systems include crystalline
powders, magnetic structures and disorder in crystals) see Keen et al (2005a) and McGreevy
(2001). A related data inversion method, useful as an alternative to Fourier transforming
S(q) data which can lead to termination and other errors (e.g. Leadbetter and Wright (1972b),
Lorch (1969), Waser and Schomaker (1953)), is that of MCGR or MCGOFR (Pusztai and
McGreevy 1999, 1997). This method does not develop a 3-dimensional model of the system
but produces a g(r) or G(r) whose Fourier transform is consistent with the diffraction data,
and thereby offers some estimate of the way in which experimental errors propagate to the
real-space function.

6.2.2. Empirical potential structure refinement. Originally named EPMC (empirical
potential Monte-Carlo) (Soper 1996a), the EPSR method, like RMC, is based on a fitting
procedure through a Monte Carlo simulation, but includes an extra step in the iteration loop
so as to allow a refinement of interatomic potentials. Other iterative methods coupling
molecular dynamics simulations with interatomic potential inversion schemes (i.e. where
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the interatomic potential u(r) is deduced from measured g(r)) have been presented by
Levesque et al (1985) (the LWR method) and Schommers (1983). Pair potentials and
ion-electron pseudo-potentials have also been deduced from experimental structure factors
using inversion schemes that involve integral equation methods (see e.g. Dharma-wardana and
Aers (1983)).

Generally applied to liquid (or fluid) systems, an EPSR refinement begins by constructing
via Monte Carlo techniques an initial three-dimensional structural model that has the correct
density and temperature, using assumed reference pair-potentials U ref

αβ (r) between the different
atomic sites α and β in the liquid. Each reference potential should, in general, be chosen to
be as realistic as possible and, in practice, is usually taken to be a combination of Lennard–
Jones and Coulomb terms. From the initial structural model are then calculated the partial
pair-distribution functions gαβ(r) and the corresponding effective potentials of mean force:

ψαβ(r) = −kBT ln[gαβ(r)], (6.1)

which in fact reduce to the true interatomic pair-potentials uαβ(r) in the limit of an infinitely
dilute gas.

An effective potential of mean force is also calculated from each gαβ(r) of the experimental
data (obtained by Fourier transforming the experimental partial structure factors). Empirical
pair-potentials U

emp
αβ (r) are then formed by setting them equal to the difference between the

data-derived ψαβ(r) and those derived from the structural model. These empirical potentials
are added as correction terms to the reference potentials, and the model is then re-equilibrated
using the new reference potentials, after which comparison with the data leads to a recalculation
of the U

emp
αβ (r), and so forth. This iteration is continued until no significant difference remains

between the gαβ(r) of the model and those of the data. The desired outcome is that the
model liquid represents the real liquid in a similar way as for the RMC method, while being
self-consistent with realistic interatomic potentials.

The EPSR method is increasingly used to refine complex molecular liquids, since the
atoms can be more efficiently constrained, as compared with RMC, to maintain the molecular
structure as the simulation proceeds. In addition to the modelling of atomic positions, it is also
possible to produce orientational correlation maps (e.g. Bowron et al (1998a), Andreani et al
(1997)) and three-dimensional spatial density maps (e.g. Finney et al (2002), Soper (2001)) that
help to interpret the molecular interactions in the liquid. However, the presentation of such final
numerical results, albeit impressive, should not preclude the publication of the experimental
data along with the fitted curves.

Recent applications of the EPSR method for structure determination include a solution
of tertiary butanol in water (Bowron and Moreno 2003), an ionic liquid comprising a large
asymmetric organic cation (Hardacre et al 2003), high- and low-density amorphous ice (Finney
et al 2002), liquid alumina (Landron et al 2001), high- and low-density water (Soper and Ricci
2000), subcritical and supercritical methanol (Yamaguchi et al 2000), water and ice at different
temperature/pressure state points (Soper 2000), a solution of LiCl in high-temperature and
supercritical water (Yamaguchi and Soper 1999), liquid hydrogen halides (Andreani 1998)
and pure tertiary butanol (Bowron et al 1998b).

6.2.3. Critique of structure refinement methods. In some circles the use of these refinement
methods (RMC and EPSR) has been criticized on the grounds of the non-uniqueness of the
solutions (e.g. McGreevy (1995), Soper (2001))—in other words, is it possible to find other
solutions that fit the data equally well? The formal answer to this question is that there is no
unique solution for any realistic experiment. However, if a satisfactory goodness of fit has been
obtained then the model is at least consistent with the data. As such, if it supports evidence
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obtained from other experimental techniques or a previous hypothesis then clearly relevant
conclusions can be made.

It has also been claimed that RMC/EPSR refinement methods allow one to determine
partial structure factors from experimentally under-determined systems—this point must be
treated with caution. For example, in an experiment on a binary liquid for which the scattering
lengths of the elements are exactly the same, there is no information in the diffraction data
concerning the arrangement of atoms of type A around those of type B. This is self-evident
as we know that we have only measured SNN(q) and hence the atomic positions irrespective
of the type of atom. Indeed, if an unconstrained RMC simulation is run on such data, or even
if it uses species-independent constraints such as a single minimum interatomic distance, it
produces three identical partial structure factors—exactly as predicted. We may choose to add
further constraints, for example, on species-dependent coordination numbers or on different
minimum interatomic distances (for AA, BB and AB) coming from different atomic sizes,
and these constraints will indeed give rise to different partial structure factors in our RMC
fit. It is clear, however, that these differences arise purely from the constraints made, and it
may be equally possible to choose a different set of constraints that produce an equally valid
fit. This highlights a difficulty of the RMC/EPSR methods, i.e. what is the relative weight of
the experimental data, compared with the imposed constraints and (in the case of EPSR) the
choice of reference potential, on the results of the refinement? An attempt to address some of
these problems is given by Soper (2005b).

7. Conclusions and prospective

The experimental and theoretical tools employed in neutron and x-ray diffraction studies of
liquids and glasses differ, in general, from those used for diffraction studies of single or
powdered crystals. The lack of a crystalline lattice necessitates a probabilistic description of
the atomic structures of liquids or glasses and gives rise to weaker and more diffuse diffracted
intensity as compared with Bragg peak intensities. There is therefore a requirement for more
elaborate data analysis procedures than for the case of crystalline systems, in order to extract
useful quantitative information.

In powder diffraction data analysis, it is usual to consider only the elastic scattering that
contributes to Bragg peak intensities (e.g. Rietveld refinement) and to disregard the diffuse
scattering. Hence the information provided, on only the time-averaged atomic positions,
is insensitive to any time-dependent (i.e. dynamic) spatial correlations between atoms. By
comparison, in the case of diffraction from liquids or glasses an analysis is made of the
so-called total scattering (i.e. S(q) or F(q)) which provides information on the average of
instantaneous atomic positions and can therefore be more sensitive to these correlations. Thus,
total scattering experiments can be of interest for resolving crystalline structures (e.g. Keen
et al (2005b), Hui et al (2005), Neder and Korsunskiy (2005), Keen (2002)), and an increasing
number of powder diffraction groups are adopting techniques such as so-called PDF analysis
(Egami and Billinge 2003). The value of the tools developed for diffraction studies of liquids
and glasses is therefore being recognized by other diffraction communities, especially as more
complex structures are studied.

The inherent complexity of liquids and glasses makes their structure an extremely difficult
task to determine. The problem is, therefore, best tackled by obtaining a consistent set of results
from a plurality of techniques that include diffraction (both x-ray and neutron) and spectroscopy
(e.g. nuclear magnetic resonance, Raman, EXAFS and infra-red)—see e.g. Fischer and Schober
(2003). Future advances in x-ray and neutron sources suggest that diffraction data will
become increasingly more accurate and lead to much more stringent constraints on structural
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models of the materials under study, whether these models are obtained by simulation or
structure refinement methods. In the case of neutron diffraction, measurement of the structure
of disordered materials has gained enormously from the construction of well-designed and
purpose-built instruments. By comparison, the exploitation of x-ray diffraction for accurate
structural measurements of liquids and glasses is less well advanced but the advent of third
generation x-ray sources means that there is a huge potential for the further development of
x-ray methods, especially with regards to anomalous x-ray diffraction (AXD). Recent proposals
for dedicated diffractometers at the advanced photon source (e.g. beamline 11-ID as described
at http://www.aps.anl.gov/Future/Reports/index.html) and at other sources suggest that huge
gains may be made by exploiting x-ray methods alone and by combining the x-ray and neutron
diffraction techniques. Finally, the ability to scatter intense x-ray beams from small sample
volumes has seen a rapid increase in the use of x-ray diffraction for studying materials under
extreme conditions, such as high pressures and temperatures.

In this review we have tried to respect the historical context of the development of
neutron and x-ray diffraction studies of liquids and glasses, while explaining pedagogically
the experimental techniques and data analysis methods involved, as well as citing recent trends
and advances in the field, including those concerned with numerical simulations. We hope that
this perspective has produced a coherent and practical review of an area of pure and applied
research involving physics, chemistry and biology.
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Pálinkás G, Radnai T and Hajdu F 1980 Z. Naturf. A 35 107
Parrinello M and Tosi M P 1979 Riv. Nuovo Cimento 2 1
Pasquarello A, Petri I, Salmon P S, Parisel O, Car R, Tóth E, Powell D H, Fischer H E, Helm L and Merbach A E
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