Physics with Neutrons I

Prof. Winfried Petry Physikdepartment E13, TU München WS 17/18 26.01.2018

Exercise sheet 7

Dr. rer. nat. Zach Evenson (zachary.evenson@frm2.tum.de)

Due on 26.01.2018

wiki.mlz-garching.de/n-lecture05:index

1 Dynamical range of neutron spectrometers

We are interested in \mathbf{Q} , but we measure $\mathbf{k_i}$ and $\mathbf{k_f}$ (all measured in Å⁻¹) which are connected via

$$\mathbf{Q} = \mathbf{k_f} - \mathbf{k_i} \ . \tag{1}$$

- 1. Draw some possible scattering triangles for both elastic and inelastic scattering. What is the meaning of the direction of the \mathbf{k} and \mathbf{Q} ? Which experimental constraints do you expect?
- 2. Which absolute values $|\mathbf{Q}|$ can be reached in a scattering experiment as a function of $|\mathbf{k}_i|$, $|\mathbf{k}_{\mathbf{f}}|$, and the scattering angle 2θ ?
- 3. Show that this relation reduces to Bragg's law in the case of elastic scattering.
- 4. Basically, there are two classes of spectrometers: some fix $\mathbf{k_i}$, others $\mathbf{k_f}$ during an experiment. (It can also be varied which however requires a reconfiguration of the instrument.) Two examples at the FRM II are the time-of-flight spectrometer TOFTOF which works with a fixed $\mathbf{k_i}$ and the triple axis spectrometer PUMA which fixes $\mathbf{k_f}$. What are the consequences for the scattering triangles that can be realized during an experiment?
- 5. The energy change of the neutron is defined as $\Delta E = E_f E_i$ (all measured in meV) with

$$E_{i,f} = \frac{\hbar^2 k_{i,f}^2}{2m_n}$$

Which are the limits of ΔE for TOFTOF and PUMA, respectively?