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Solutions

1. Python

Some exercises require the use of some program for numerical computation, such as Matlab,
Mathematica or some programming language. Several exercises will require the use of a computer.
The solutions will always be given in the language python. Although you are not forced to, it
might be a good idea to install the requirements to run these programs on your computer:

e python, the language interpreter http://www.python.org/download/
e ipython, a nice command line http://ipython.scipy.org/dist/

e numpy & scipy, packages for numerical and scientific computing
http://www.scipy.org/Download /

e matplotlib, a package for 2D-plotting http://matplotlib.sourceforge.net/

Personally, I use the ANACONDA distribution of python which comes with the developing envi-
ronment SPYDER https://www.anaconda.com/download/

2. Coherent and Incoherent scattering cross section

In most cases, real materials do not have a single scattering length, but a distribution of several
values. This could be due to different elements, isotopes or a non-zero nuclear spin. In case of a
nuclear spin, the isotope has two scattering lengths, one for parallel spin alignment of nucleus an
neutron b™ and one for antiparallel alignment b~

e In the experiment, we use cross sections ¢ instead of scattering lengths b to describe a
sample and especially distinguish between coherent and incoherent scattering. How are those
quantities related? Is there a fundamental difference for a mixture of elements, isotopes or
spin-states?

e What extreme cases of scattering can happeen in any system?

e (Calculate the coherent and incoherent scattering cross sections for an element with n iso-
topes. Assume that each isotope has a relative abundance f;

e (Calculate the coherent and incoherent scattering cross sections for a single isotope with
nuclear spin /.

e Determine the coherent and incoherent scattering cross sections of pure Hydrogen and Deu-
terium with the following values:

Nuclide [ b (fm) | Nuclide I b (fm)
T 1/2 07 =1085 | 2H 1 b =953
b~ = —47.50 b— =0.98



Solution

e In the derivation of the double differential cross section, the sum can be splitted in two
parts. The first considers all pairs of atoms and reults in the collective or coherent scattering,
while the second only sums over individual atoms and gives the incoherent scattering. In
the prefactor of both sums we find the scattering cross sections given by:

Oeon = 41 (5)2

Gine = 4 <b_2 - (5)2) — 47 (Ab)>

Here, each atom has an in individual scattering length b; and can be written as b; = b+ Ab
with the expectation value b = (b;);. In the calculation, only the distribution of different
scattering lengths is important regardless of their origin. Accordingly, there is no difference
between the coherent and incoherent scattering due to different spin states, isotopes or ele-
ments.

e The extreme cases are summarized in the table below:

b Ab Remarks

0 0 no scattering at all

0 large | only incoherent scattering, positive and negative b;
large 0 only coherent scattering, all b; are identical
large large coherent and incoherent scattering

e In order to calculate the scattering cross sections we need the statistical quantities b and
b2. For a mixture of different isotopes with relative abundance f; this gives the following
expressions which can be inserted in the above definitions of .., and oy,

N
Zfi =1
=1
3 N
b=(b)i=Y fi-b
i=1

N
0 = (bi)i =) fi- b}
i=1

e In case of a single isotope with nuclear spin, we can basically use the same expressions but
we can express the relative abundance f; in terms of the spin. In any scattering event, the
spins of neutron and nucleus can be aligned either parallel (with scattering length b%) or
anti parallel(with scattering length b~). This is expressed in the value of the total spin of
the system neutron-nucleus which is either

ST =1+1/2, for parallel alignment or
S™ =1—1/2, for anti parallel alignment

With each total Spin S, a number N of possible states is associated, representing the value
of one selected component of the spin vector:



t =281 +1=2I+2, for parallel alignment
~ =25 +1=2I, for anti parallel alignment

With this, the relative abundance f of spin configurations can be calculated as:

= 7 +J:r - = 21'[—:_11 , for parallel alignment
I
ff+f I+17
Finally, arbitraty mixtures of isotopes, elements and spin states can be combined in the
following way:

f =

for anti parallel alignment

E:<bi,+/ z+/— Zfz f+b++f b)

b2 = (b < i,+/— z+/— Zfz f+ b+ (fi_bi_)Q)

e With the above equations we get for hydrogen or deuterium:

Nuclide | b (fm) 82 (fm?) | oon (B)  ine (b) | Gas (D)
TH —3.74 652 1.76 80.2 0.333

’H 6.68 60.9 5.61 2.04 | 0.000519

The absorption cross section is listed additionally, to illustrate, why heavy water is often
used as a moderator, even though scattering is stronger and more efficient for hydrogen
(normal water).

3. Bragg Scattering II

Consider a similar setup of exercise 4 on sheet 2 (Bragg Scattering) with neutron wavelength
A = 2.04, lattice parameter d = 3.24 and n = 100 scattering planes. Assume, that each scatterer
(scattering plane) has its own scattering length b; and compute the scattering pattern for the
following cases:

1.
b — 0 if j is even,
7)1 if g is odd.
2.
b 1 if j is even,
7712 ifjis odd.
3.

) =1 if jis even,
1 ifjis odd.
. Choose b; randomly for each scatterer (plane) : b; =0 or b; =1
. Choose b; randomly for each scatterer (plane) : b; =1 or b; =2
(

4
5
6. Choose b; randomly for each scatterer (plane) : b; = —1 or b; =1
7

. Feel free to play around!



Solution

The solution of this exercise is mostly equivalent to exercise 4 on sheet 2. Hence, only the new
parts and results are presented here.

The scattering length is the amplitude b of a scattered wave. So, in order to account for different
values b; at different scattering planes we take this into account when summing up all contributing
scattered waves. The previous expression:

cos (0-¢)+cos(l-¢)+..+cos((N—1)

_ ) _ 0) Y’
Lot = (Ag+ A1+ ...+ Ayq)” = ( sin (0- @) +sin (1- @) + ... + sin((N — 1) - ¢) )

which has the same scattering length everywhere is changed to:

bo-cos(0-¢)+by-cos(l-¢)+...+by_q-cos((N—1)-09) )2

L = (Ag+ A1+ ...+ Ay_1)? = ( by - sin (0- @)+ by -sin (1-¢) + ...+ by_1 - sin (N — 1) - )

In the Python script, this hat to be implemented as well. The previous computation read:

# add up all contributing waves
for n in range(N):

X += np.cos(n*phi)

y += np.sin(n*phi)

This is extended by the scattering length as well. There are several ways how to express b; and
the following is just one possibility.

# add up all contributing waves

for n in range(N):
b = (...) # see the following cases
X += b*np.cos(n*phi)
y += b*np.sin(n*phi)

Case 1. : b = np.mod(n,2)

Case 2. : b = np.mod(n,2)+1

Case 3. : b = 2*np.mod(n,2)-1

Case 4. : b = np.random.choice([0,1])
Case 5. : b = np.random.choice([1,2])
Case 6. : b = np.random.choice([-1,1])

For cases 4. to 6. the result will be different for each computation. However, this will only show
for small numbers N of scattering planes as for large N statistics take over.

e Case 0 : No distribution of b. This is just a reference for the scattering pattern without
disorder.

e Case 1 : Every second atom is missing, which means that we are looking at a scattering
planes with double the distance. accordingly, the distance between scattering peaks in k-
space is halfed.

e Case 2 : the lattice can be split into a superposition of two parts, one with b = 1.5 (see Case
0) for all planes, and another one with alternating b; = £0.5 (see Case 3). The resulting
scattering function is again the superposition of these two contributions. The first part
creates the large peaks, while the second one creates the smaller peaks in between.
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Case 3 : A negative scattering length means that the neutron gets a phase shift of = when it
is scattered,which is not the case for positive b. If we add this additional phase shift to the
Bragg equation, any case of constructive interference (a phase shift between two adjacent
planes of n27=27 ) will become a destructive interference instead (phase shift of n2r+r=m) ,
and vice versa. Hence, the Bragg peak positions are shifted by half the periodicity in k-space.

Case 4 : The random distribution in the next three cases allow us to think about the signal in
terms of coherent and incoherent scattering. For Case 4, the relative difference between the
b; is very large which is why we see a strong incoherent contribution in the noisy background
in between Bragg peaks. The effect of Case 1, that we have additional Bragg peaks, is not
visible for this random distribution of the same b,.

Case 5 : Essentially identical to Case 4, but since the relative difference between the b; is
smaller, and the mean value is larger, we observe higher intensity Bragg peaks with lower
background.

Case 6 : In this last case, the mean of the b; is zero. Acoordingly we observe no coherent
scattering (Bragg peaks) at all and only see background noise due to incoherent scattering.
(note the scale of the plot)
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