Physics with Neutrons I

Alexander Backs
WS 18/19
alexander.backs@frm2.tum.de
09.11.2018

Exercise sheet 3

https://wiki.mlz-garching.de/n-lecture06:index

Probably due on 14.11.2017

1. Python

Some exercises require the use of some program for numerical computation, such as Matlab, Mathematica or some programming language. Several exercises will require the use of a computer. The solutions will always be given in the language python. Although you are not forced to, it might be a good idea to install the requirements to run these programs on your computer:

- python, the language interpreter http://www.python.org/download/
- ipython, a nice command line http://ipython.scipy.org/dist/
- numpy \& scipy, packages for numerical and scientific computing http://www.scipy.org/Download/
- matplotlib, a package for 2D-plotting http://matplotlib.sourceforge.net/

Personally, I use the ANACONDA distribution of python which comes with the developing environment SPYDER https://www.anaconda.com/download/

2. Coherent and Incoherent scattering cross section

In most cases, real materials do not have a single scattering length, but a distribution of several values. This could be due to different elements, isotopes or a non-zero nuclear spin. In case of a nuclear spin, the isotope has two scattering lengths, one for parallel spin alignment of nucleus an neutron b^{+}and one for antiparallel alignment b^{-}

- In the experiment, we use cross sections σ instead of scattering lengths b to describe a sample and especially distinguish between coherent and incoherent scattering. How are those quantities related? Is there a fundamental difference for a mixture of elements, isotopes or spin-states?
- What extreme cases of scattering can happeen in any system?
- Calculate the coherent and incoherent scattering cross sections for an element with n isotopes. Assume that each isotope has a relative abundance f_{i}
- Calculate the coherent and incoherent scattering cross sections for a single isotope with nuclear spin I.
- Determine the coherent and incoherent scattering cross sections of pure Hydrogen and Deuterium with the following values:

Nuclide	I	$\mathrm{~b}(\mathrm{fm})$	Nuclide	I	$\mathrm{~b}(\mathrm{fm})$
${ }^{1} \mathrm{H}$	$1 / 2$	$b^{+}=10.85$	${ }^{1} \mathrm{H}$	1	$b^{+}=9.53$
		$b^{-}=-47.50$			$b^{-}=0.98$

3. Bragg Scattering II

Consider a similar setup of exercise 4 on sheet 2 (Bragg Scattering) with neutron wavelength $\lambda=2.0 \AA$, lattice parameter $d=3.2 \AA$ and $n=100$ scattering planes. Assume, that each scatterer (scattering plane) has its own scattering length b_{j} and compute the scattering pattern for the following cases:
1.

$$
b_{j}= \begin{cases}0 & \text { if } j \text { is even }, \\ 1 & \text { if } j \text { is odd }\end{cases}
$$

2.

$$
b_{j}= \begin{cases}1 & \text { if } j \text { is even } \\ 2 & \text { if } j \text { is odd }\end{cases}
$$

3.

$$
b_{j}= \begin{cases}-1 & \text { if } j \text { is even } \\ 1 & \text { if } j \text { is odd }\end{cases}
$$

4. Choose b_{j} randomly for each scatterer (plane) : $b_{j}=0$ or $b_{j}=1$
5. Choose b_{j} randomly for each scatterer (plane) : $b_{j}=1$ or $b_{j}=2$
6. Choose b_{j} randomly for each scatterer (plane) : $b_{j}=-1$ or $b_{j}=1$
7. Feel free to play around!
