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Solutions

1. 1D Reciprocal Lattice

For the scattering computations from a simple cubic lattice, so far, we have simplified the crystal
to a 1 dimensional lattice, with point-like atoms at equal distance. Instead of computing the
scattering pattern by summing up over all scattered waves, we have learned in the lecture, that
the scattering function is also given by the Fourier transform of the scattering structure in real
space.
Assume a 1D chain of point-like atoms (delta functions) with distance d and follow the steps
below.

• Express the linear chain of Atoms in form of a function f(r).

• Form the Fourier transform of this function and evaluate it by assuming an infinite number
of atoms. What is the meaning of k?

FT (f(r)) = f(k) =
1√
2π

∫
f(r)exp(−ikr)dr

• The Fourier transform will have the same general form as the real space function with a
different spacing p. How are d and p related?

• (optional) Compute the Fourier transform for limited numbers of Atoms in the chain and
compare it to the results previously obtained by Bragg scattering.

Solution

• The linear chain of atoms can be represented by an infinite sum over delta functions at
integer multiples of the distance d:

f(r) =
inf∑

n=− inf

δ(r −Rn) , with Rn = n · d

• For calculating the Fourier transform we first use, that we can commute the sum and inte-
gration, and easily evaluate the integral:

FT (f(r)) = f(k) =
1√
2π

∫
f(r)exp(−ikr)dr

=
1√
2π

∫ inf∑
n=− inf

δ(r − nd)exp(−ikr)dr

=
1√
2π

inf∑
n=− inf

∫
δ(r − nd)exp(−ikr)dr
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=
1√
2π

inf∑
n=− inf

exp(−inkd)

For the next step, the infinite sum has to be evaluated. Mathematically, we can look at the
limit of the sum:

lim
N→∞

N∑
n=−N

exp(−inkd) = lim
N→∞

N∑
n=0

exp(−inkd) +
N∑

n=1

exp(+inkd)

= lim
N→∞

N∑
n=0

exp(−inkd) +
N∑

n=0

exp(+inkd)− 1 = 1 + 2sumN
n=1cos(kd)

= lim
N→∞

sin((N + 1/2)kd)

sin(kd/2)

in the last step we used the Dirichlet Kernel, which in the limit of N → inf becomes
effectively a sum of delta functions at the positions kd = 2mπ with m integer. This is exactly
the definition of the reciprocal lattice positions (or reciprocal vectors in higher dimensions).
There is a normalization term involved in the limit, which we ignore at this moment. With
this result, we get

≈
inf∑

m=− inf

δ(k −Km) , with Km = m
2π

d
= m · p

which has the same shape as the real space function, just with a different spacing p.

For a better understanfding of the infinite sum of complex exponentials think about the
following two cases:

1. for any case with k = 2π/d, the exponential function exp(−inkd) = 1 for all n. At
these k-values the Fourier transform adds up to infinity, which in the limit we identify
with a delta function

2. for any other case, k 6= 2π/d, the exponential function gives a unitvector in the complex
plane. When performing the infinite sum over n, the resulting vectors for a single k
will cancel each other and the fourier transform is equal to zero. (In some cases the
vectors will only have a limited set of directions, e.g. for k = π/d, while other k-values
result in arbitrary directions with a statistical mean value of zero)

• The computations for a limited set of atoms is, of course, identical to the geometric if we look
at the scattering intensity I = |f(r)|2. However we get additional insight in the functan as
we can have a look at the real an d imaginary part. Shown below is an example for N = 10.
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2. Ambiguity of the Scattering Intensity

In a scattering experiment, we can only measure the scattering intensity I(k) = |f(k)|2. Since
f(k) is complex, we lose a part of the information contained in it, i.e. the imaginary part (or
phase). To illustrate this, we take a look at a small chain of 4 atoms which have a gaussian shape:

fl(x) =
1√

2πσ2
l

exp

(
−(x− rl)2

2σ2
l

)
where each atom l has a position rl and a standard deviation σl. The scattering pattern is again
given by the Fourier transform FT (f(x)) = f(k), with the the Fourier transform of a single
gaussian:

FT (fl(x)) = fl(k) = exp (−ikrl) exp
(

(
−1

2
σlk)2

)
Compute the scattering function f(k) and visualize the Intensity, real part and imaginary part
and compare them for the following cases:

• All 4 atoms are equidistant with d = 3Å and have the same shape σl = 0.5.

• As before, but shift all atoms by 1Å.

• All atoms are equidistant, but have a different shape σl = [0.1, 0.2, 0.3, 0.4]Å.

• As before, but reverse the order of σl
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Solution

Both the real-space and k-space functions are given by the sum of the contributions from each
individual atom.

f(x) =
∑

fl(x) , f(k) = FT (f(x)) =
∑

fl(k)

• For Case 1 and 2, with identical atoms and lattice distance but a shift of the atoms the
Observed scatteringintensity (I = |f(k)|2) is identical as well as the complex function f(k).

• Cases 3 and 4 consist of different atoms with reversed order. Again, the scattering intensity
is identical for both cases, but now the real and imaginary part of f(k) are quite different.

• (additional) Case 5 compares two permutations of case 3 (or 4). Here, the large peaks of
|f(x)|2 are identical, however, the spaces inbetween show a different behaviour. In contrast,
the real and imaginary part of f(k) are vastly different from each other.

• (additional) Case 6 shows a comparision between identical atoms, with σ = 0.2Åand σ =
0.4Å. In this case, all peak positions of |f(k)|2 are identical but the intensity is different.
The ’size’ of the atoms can be determined by the envelope function of peak intensities. The
same behaviour is observed for the complex f(k)
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3. 2D Reciprocal Lattice

Now, we go a step further and consider a two dimensional rectangular lattice of point-like atoms
(delta functions) with lattice distances dx = 2Å in x-direction and dy = 3Å in y-direction. The
positions of all atoms are now rl = ml~a1 + nl~a2 with integers ml, nl and the basis vectors of the
lattice ~a1 and ~a2:

~a1 =

(
dx
0

)
, ~a2 =

(
0
dy

)
Analogous to the 1D case, this 2D lattice can be formulated as a function f(~r) and Fourier

transformed to obtain the scattering function f(~k). The result is again a regular structure which

is called the reciprocal lattice of the crystal. The basis vectors of the reciprocal lattice ~b1 and ~b2
are then defined such that:

~al ·~bm = 2πδlm

• Draw the real and reciprocal lattice.

• What does the crystal unit celll and first Brillouin zone look like?

• In the real lattice, each point represents the position of an atom. What is the meaning of
each point in the reciprocal lattice?

• Repeat the previous steps for a hexagonal lattice with lattice distance d = 3Å.

Solution

• With the given formula, the basis vectors of the reciprocal lattice are:

~b1 =

(
px
0

)
, ~b2 =

(
0
py

)
, with

px =
2π

dx
= 2.09/Å , py =

2π

dy
= 3.14/Å

as the reciprocal lattice distances. Additionally, we can take a look at the Area , the basis
of both lattices are spanning:

Areal = ~a1 ⊗ ~a2 = dx ∗ dy = 6Å
2

Areciprocal = ~b1 ⊗~b2 = px ∗ py =
(2π)2

dx ∗ dy
=

(2π)2

areal
= 6.58/Å

2
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• The points in a reciprocal lattice give the possible Bragg peaks in terms of vavevector trans-
fer (momentum transfer) between the incoming and scattered neutron. The positions of the
reciprocal lattice are independent from the neutron wavelength, however, the Bragg peaks
observed in an experiment and the respective scattering angle will depend on the chosen
wavelength.

• The basis vectors for a hexagonal lattice are given by:

~a1 = d

(
1
0

)
, ~a2 =

d

2

(
1√
3

)

and the reciprocal lattice vectors can be calculated again by using ~al ·~bm = 2πδlm:

~b1 =
2π√
3d

( √
3

1

)
, ~b2 =

4π√
3d

(
0
1

)
For the areas in real and reciprocal space we find the same relation as for the rectangular
case:

Areal = ~a1 ⊗ ~a2 = d ∗
√

3d

2
= 7.79Å

2

Areciprocal = ~b1 ⊗~b2 =
(2π)

d

(4π)√
3d

=
(2π)2

areal
= 5.07/Å

2

4. Internal Structure

The previous example of a 2D crystal lattice assumed point like atoms, which is reasonable if
we only consider the size of a nucleus (and its interaction potential) compared to the neutron
wavelength. However, in real materials this assumption is typically not correct. Possible reasons
might be a crystal with more than one Atom per unit cell or scatterers which are not atoms at all,
e.g. larger molecules or magnetic structures. Similarly, thermal motion of the atoms can be de-
scribed by an effective gaussian shape which is normally accounted for by the Debye-Waller factor.

Consider the rectangular 2D lattice from the previous exercise, but now with three Atoms per
unit cell. Atom 1 is positioned directly at the lattice points ~u1 = 0, while atoms 2 and 3 are at
the relative positions ~u2 = 0.4~a1 and ~u3 = 0.6~a2.
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• The real space lattice is now given by the convolution of two functions f(~r) = S(~r)⊗ F (~r).
S(~r) describes the periodic structure of the lattice and is identical to lattice described in
exercise 3. F (~r) describes the arrangement of atoms in a single unit cell (the positions of
the atoms 1, 2 and 3 ). Draw the real space lattice and formulate the functions S(~r) and
F (~r)

• How are the Fourier transforms S(~k) and F (~k) related in the scattering function f(~k)?

• How is the intensity measured in an experiment (qualitatively) changed in comparison to
exercise 3?

Solution

S(~r) =
inf∑

l,m=− inf

δ(~r − l · ~a1 −m · ~a2)

F (~r) = δ(~r − ~u1) + δ(~r − ~u2) + δ(~r~u3)

The convolution theorem states, that

FT (f(x)⊗ g(x)) = FT (f(x)) · FT (g(x))

which means in our case, that

f(~k) = FT (f(~r)) = FT (S(~r)⊗ F (~r)) = FT (S(~r)) · FT (F (~r)) = S(~k) · F (~k)

Generally speaking, S(~r) tells us about the arrangement of atoms, particles, unitcells in a crystal,
ect. while F (~r) describes how a single of those units looks like. If we look at the present case of a
crystal with multiatom unitcell, the convolution of both functions creates new deltapeaks in the
lattice. In Reciprocal space, S(~k) is again in the form of a lattice, while F (~k) is typically a rather

broad and continuous function. This means, that F (~k) only affects the intensity of Bragg peaks

defined by S(~k), instead of adding new positions. In Experminent this means, that the periodic
structure of a crystal is in most cases easily measured, while it is very difficult to identify the inner
structure of a unit Cell.
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