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1. Instrument Resolution I

For neutron scattering experiments, atoms can be well described by delta functions. So far, we have
seen that Bragg scattering from a perfect (and sufficiently large) single crystal gives rise to very
sharp intensity peaks which are again well described by delta functions. However, in experiment
these sharp peaks always have a finite width and have the shape of peak functions (such as
Gaussian or Lorentzian distribution). This is no effect of real samples, but of the experimental
setup. The two main contributions to this broadening are:

• The incident beam direction. A neutron beam is never perfectly parallel, but has a finite
divergence.

• The neutron wavelength. Both, monochromators and velocity selectors let through a certain
spectrum of neutrons.

Consider a 1D experiment where we look at scattering under small angles. The incident neutron
beam is collimated in a 20m long flight tube with 10mm diameter apertures and the wavelength is
determined by a velocity selector. The selector has a triangular shaped spectrum with δλ/λ = 5%
(i.e. the FWHM of the distribution has the value of δλ).

• For incoming neutrons, what is the shape and width of the angular distribution?

• How do angular and wavelength spread affect the scattering process?

• What is the shape and width of Bragg peaks finally observed?

• What changes if we consider scattering under large angles?

• Think about other possible factors influencing the shape of Bragg peaks in an experiment!

Solution

• For a simple 1D setup, the maximum angle under which neutrons can pass the collimation
tube (from one edge of entrance to the opposite edge of the exit) is given by

θmax = arctan

(
d

l

)
= arctan

(
10mm

20m

)
= ±0.5mrad = ±0.029◦

For a simple flight tube, the relative intensity of all neutrons passing under a certain angle is
restricted by geometric constraints (at which points of entrance can neutrons under a certain
angle still pass through) and grows linearly from I(±θmax = 0 to I(0) = 1 ,i.e. a triangular
distribution with FWHM= θmax.
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• For scattering under small angles the Bragg equation is:

ϑ = arcsin

(
λ

2d

)
≈ λ

2d

meaning, that uncertainties in ϑ and λ both affect the equation linearly. However, while
the angular spread is the same for all wavelengths and samples investigated, the wavelength
uncertainty has a larger effect on scattering under larger angles (meaning smaller structures).
In any case, the sharp delta peaks of Bragg scattering are broadened which is expressed by
a convolution of the scattering pattern with the angular and wavelength distribution.

• The convolution of two triangular function with different widths is in mathematically easy,
however, a set of case distinctions have to be made which turns out to be quite tedious.
However, this step can be easily done by computation.
Firstl, let us consider the angular spread due to wavelength uncertainty in numbers. For
small angle scattering, a typical set of parameters would be λ = 10Åand d = 0.1µ m. This
results in a scattering angle of ϑ = 5mrad = 0.29◦ and a uncertainty from the wavelengths
∆ϑ = 0.25mrad = 0.0145◦. This is similar (factor 1/2) to the uncertainty due to collimation.
The resulting Peak shape from convolving both distributions is shown below, with a mea-
sured HWFM≈ 0.6mrad = 0.0348◦. The additional dashed green line is a Gaussian function
illustrating the similar shape and the justification, why neutron beam shapes are often as-
sumed to be Gaussian.

• We already saw, that for larger angles, the absolute uncertainty of the scattering angle due
to a wavelength spread increases. Additionally, the small angle approximation in no longer
valid. Both factors make small angle scattering more precise. (Which is why small angle
instruments can use velocity selectors in the first place, instead of single crystal monochro-
mators).

2. Instrument Resolution II

Insulating organo-metallic compound NiCl2− 4SC(NH2)2 (know as DTN) demonstrates magne-
toelastic properties (Phys. Rev. B 77, 020404(R) (2008)). In an applied magnetic field its c-axis
first shrinks by 6 · 10−3% and then expands up to 2.2 · 1−2% in comparison to the zero field value.
Calculate whether it is possible to detect such a change in length of the c-axis using powder neu-
tron diffractometer HRPT located in PSI (the instrumental resolution is equal to ∆θ/θ = 9.5·10−4

for Q = (002). The unit cell is tetragonal (space group I4 number 79) and the lattice parameters
(zero magnetic field) are: a = b = 9.558 Å, c = 8.981 Å.
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Solution

In the magnetic field the c-axis shrinks by 6 · 10−3% and then expands by 2.2 · 10−2% (Figure).
The instrument resolution is given by ∆θ/θ = 9.5 · 10−4. Since the unit cell is tetragonal, the
according reciprocal lattice vector is:

~c∗ =
2π

V0

~a×~b = 2π
~a×~b
~a×~b · ~c

→ c∗ =
2π

c
.

We look at the specific Bragg reflex at (hkl) = (002) and get

Q = (0, 0, 2) =

(
0, 0,

4π

c

)
= (0, 0, 1.3992Å

−1
).

The largest relative change between the shrinked and expanded c-axis is

∆d

d
= 6 · 10−3% + 2.2 · 10−2% = 2.8 · 10−4

Now use Bragg’s law and d = 2π/Q

sin θ(002) =
λ

2d
=
λ

2

Q

2π
=
λ

2

4π

2πc
=
λ

c
,

which means that the peak shifts by

∆θ

θ
=

∣∣∣∣∣∣
arcsin

(
λ

c+c∆d/d

)
− arcsin

(
λ
c

)
arcsin

(
λ
c

)
∣∣∣∣∣∣ ≈

∣∣∣∣∣∣
(

λ
c+c∆d/d

)
−
(
λ
c

)(
λ
c

)
∣∣∣∣∣∣ =

∣∣∣∣ 1

1 + ∆d/d
− 1

∣∣∣∣ = 2.8 · 10−4

≤
(

∆θ

θ

)
instrument

= 9.5−4.

Here we used arcsinx ≈ x for small x. (For typical neutron wavelengths 1Å ≤ λ ≤ 10Å the
scattering angle is not necessarily small, however as we only look at a small relative change, the
approximation is still good enough) Therefore, the effect cannot measured with this instrument.

3. Towards disordered systems

As the lecture will now go from Well ordered crystals to liquids and other disordered systems,
take some time to play around with disorder in 1D atomic chains. Similar to the computations in
exercise 3 on sheet 3, try out some different kinds of disorder:

• different atoms (with different scattering length) in perfect order, complete disorder.

• substitutional defects can be modeled by adding a small chance to have the wrong atom at
each lattice point

• imperfect ordering can be introduced by adding a small random shift to each lattice position.
this can be either individual for each atomic position, or cumulative.

• some binary alloys tend to cluster. this can be modeled by selecting the Atom for each lattice
position randomly, but make it dependent on the previous position with a bias towards the
same kind of atom.

This is no exercise with a fixed solution. It is rather meant to illustrate the effects of different
kinds of disorder in crystals and how strong they are. Remember to compare them to scattering
from liquids, once they are covered in the lecture!
If you have trouble implementing an idea in python, feel free to write me an email.
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Solution

The following cases illustrate some examples of disorder and their impact on the scattering image.
All computations have been done with a 1D chain of point-like atoms, with a set of N = 500
Atoms, a lattice distance d = 6Åand a neutron wavelength λ = 1.9Åwhere not stated otherwise.

• Case 1: Perfect crystal without any disorder for reference.

• Case 2: All atomic positions have a random individual displacement from their original po-
sition. The error dt is randomly chosen from a gaussian distribution with σ = 0.3Å.

for n in range(N):
dt = np.random.normal(0 , 0.3)
phi = 2 * np.pi*2 * (n * d + dt) * np.sin(np.pi * Theta / 180.) / Wl
x += np.cos(phi)
y += np.sin(phi)

I += (x**2 + y**2) / float(N**2)

• Case 3: This times, the error of each atom will be added up. The distance from one Atom
to the next is still d (plus the error dt) but it is now a local and not a global order. In this
case σ = 0.12Å.

dt = 0 for n in range(N):
dt += np.random.normal(0 , 0.3)
phi = 2 * np.pi*2 * (n * d + dt) * np.sin(np.pi * Theta / 180.) / Wl
x += np.cos(phi)
y += np.sin(phi)

I += (x**2 + y**2) / float(N**2)

• Case 4 & 5: For both cases the crystal structure is perfect, but the scattering length is
randomly selected from tweo values for each Atom (0.5 or 1.0 for Case 4 and 0.0 or 1.0 for
Case 5). These examples were already shown in previous exercises.

• Case 6: the following cases are a sketch of what happens in alloys of two atoms, which tend
to cluster and which have a lattice distance depending on the kind of Atom.
for Case 6, the first variety of Atoms has d = 6Åand a chance of 1/20 that the next Atom
will be of the second variety, which has d = 5Åand a cance 1/7 to switch back to the first kind.

D = [6.,5.]
d = 0
m = 0
ch = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] , [1,1,1,1,1,1,0]]

for n in range(N):
m = np.random.choice(ch[m])
d += D[m]
phi = 2 * np.pi*2 * (d) * np.sin(np.pi * Theta / 180.) / Wl
x += np.cos(phi)
y += np.sin(phi)
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I += (x**2 + y**2) / float(N**2)

• Case 7: Both varieties of atoms have a switching chance of 1/20.

• Case 8: Both varieties of atoms have a switching chance of 1/7.

• Case 9: Both varieties of atoms have a switching chance of 1/20. the distance parameters
are now d = 6.0Åand d = 5.1Å

• Case 10: Both varieties of atoms have a switching chance of 1/20. the distance parameters
are now d = 6.0Åand d = 5.95Å
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Case 1. Case 2. 

Case 3. Case 4. 

Case 5. 
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Case 6. Case 7. 

Case 8. Case 9. 

Case 10. 
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