Physics with Neutrons I

Alexander Backs

Exercise sheet 9

Due on 16.01.2019

1. Guinier Approximation

In the lecture, the expression for the differential scattering cross section was given for the case of several assumptions:

$$
\left.\frac{d \sigma}{d \Omega}=\left.\langle | \int_{V_{p}} \Delta \rho_{b} e^{i \vec{q} \vec{r}} d^{3} r\right|^{2}\right\rangle_{\Theta}
$$

Each particle was assumed to be spherically symmetric and independent from all other particles (thus excluding positional or orientational correlations). The scattering length density $\Delta \rho_{b}$ is constant inside the particle and measured relative to the solvent (which is thus effectively set to 0) and the integration can be restricted to the particle volume V_{p}.
For small q, the exponential function in the integral can be expanded in a Taylor series to obtain Guinier's law.

- First only consider the constant term of the expansion and calculate $d \sigma / d \Omega(q=0)$.
- Now add the cubic term (in q) as well. The linear contribution vanishes due to the spherical symmetry we chose. Derive the following equation:

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \Omega}(q=0)\left(1-\frac{q^{2}}{3} \frac{1}{V_{p}} \int_{V_{p}} r^{2} d^{3} r\right)
$$

You will need to make another approximation where you only take the two lowest order contributions of the absolute square into account.

- In neutron scattering, the radius of gyration is defined as:

$$
R_{g}^{2}=\frac{1}{V_{p}} \int_{V_{p}} r^{2} d^{3} r
$$

What is the meaning and definition in classical mechanics and how do both quantities differ? Calculate the (neutron) radius of Gyration for a homogeneous sphere.

- Guinier's law is most often written in a way which resembles a single logarithmic plot. Rewrite the equation that it looks like:

$$
\ln \left(\frac{d \sigma}{d \Omega}\right)=f(q)
$$

You will encounter another approximation for low q in this step.

2.Spherical shells

Consider sphere-like particles which consist of an inner and an outer shell. The inner shell has a radius $0 \leq r \leq R_{i}=105 \mathrm{~nm}$ and a homogeneous sld $\rho_{i}=65 \cdot 10^{-6} / \AA^{2}$ while the outer shell has a radius $R_{i} \leq r \leq R_{o}=180 \mathrm{~nm}$ and a homogeneous sld $\rho_{o}=23 \cdot 10^{-6} / \AA^{2}$. The particles are very dilute in a solution with $\rho_{s}=-6 \cdot 10^{-6} / \AA^{2}$.

Starting from the expression for spherical symmetric scattering cross section (reference sheet 8):

$$
\frac{d \sigma}{d \Omega}=16 \pi^{2}\left|\int \rho(r) \frac{r \sin (q r)}{q} d r\right|^{2}
$$

- Calculate and plot the scattering function for the values given above.
- From the plot, retrieve the values obtained by the approximations from exercise 1 (i.e. $\mathrm{q}=0$ and Guinier's law) and check if they are correct. Omit all normalization factors N / V.
- Can the same scattering cross section be obtained from a simple spherical particle with radius R_{x} and sld ρ_{x} ?
- Can the same small q approximative values be obtained from such a sphere?
- Repeat the first two steps in the cases where ρ_{s} of the solution is matched to either the inner or outer shell sld.

