Physics with Neutrons I, WS 2015/2016

Lecture 13, 25.1.2016

Exam (after winter term)

30min oral exam

Room E40a

Heinz Maier-Leibnitz Zentrum

Starting point: General cross-section

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega} & =\frac{k^{\prime}}{k} \frac{1}{2 \pi \hbar} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} \int_{-\infty}^{\infty}\left\langle e^{-i \boldsymbol{Q} \hat{R}_{j^{\prime}}(0)} e^{-Q \hat{R}_{j^{\prime}}(t)}\right\rangle e^{-i \omega t} \mathrm{dt} \\
I(\boldsymbol{Q}, t) & =\frac{1}{N} \sum_{j, j^{\prime}} b_{j} b_{j^{\prime}} \int_{-\infty}^{\infty}\left\langle e^{-i \boldsymbol{Q} \hat{R}_{j^{\prime}}(0)} e^{-Q \hat{R}_{j^{\prime}}(t)}\right\rangle
\end{aligned}
$$

\square Intermediate scattering function

Fourier transform (space) $\quad G(\boldsymbol{r}, t)=\frac{1}{(2 \pi)^{3}} \int I(\boldsymbol{Q}, t) e^{-i \boldsymbol{Q} r} \mathrm{dQ}$
Pair correlation function

Fourier transform (time) $\quad S(\boldsymbol{Q}, \omega)=\frac{1}{(2 \pi \hbar)} \int I(\boldsymbol{Q}, t) e^{-i \omega t} \mathrm{dt}$
\square Scattering function, directly connected to cross-section

Heinz Maier-Leibnitz Zentrum

Physical meaning of pair correlation function $G(r, t)$

$$
G(\boldsymbol{r}, t)=\frac{1}{N} \sum_{j, j^{\prime}} \int\left\langle\delta\left(\boldsymbol{r}^{\prime}-\hat{\boldsymbol{R}}_{j^{\prime}}(0)\right) \delta\left(\boldsymbol{r}^{\prime}+\boldsymbol{r}-\hat{\boldsymbol{R}}_{j}(t)\right)\right\rangle \mathrm{dr}^{\prime}
$$

Correlation between atom j^{\prime} at
time $t=0$ at position r ' and atom j at time $\mathrm{t}=\mathrm{t}$ and position $\mathrm{r}^{\prime}+\mathrm{r}$

Solits un in
$G_{s}(\boldsymbol{r}, t)=\frac{1}{N} \sum_{j} \int\left\langle\delta\left(\boldsymbol{r}^{\prime}-\hat{\boldsymbol{R}}_{j}(0)\right) \delta\left(\boldsymbol{r}^{\prime}+\boldsymbol{r}-\hat{\boldsymbol{R}}_{j}(t)\right)\right\rangle \mathrm{dr} \mathbf{r}^{\prime} \quad$ Self correlation function
$G_{d}(\boldsymbol{r}, t)=\frac{1}{N} \sum_{j \neq j^{\prime}} \int\left\langle\delta\left(\boldsymbol{r}^{\prime}-\hat{\boldsymbol{R}}_{j^{\prime}}(0)\right) \delta\left(\boldsymbol{r}^{\prime}+\boldsymbol{r}-\hat{\boldsymbol{R}}_{j}(t)\right)\right\rangle \mathrm{dr} \mathbf{r}^{\prime} \quad$ Correlation function
Coherent and incoherent part

$$
\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}\right)_{\text {coh }}=N \frac{k^{\prime}}{k}\langle b\rangle^{2} S_{\text {coh }}(\boldsymbol{Q}, \omega) \quad\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}\right)_{\text {inc }}=N \frac{k^{k^{\prime}}\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) S_{\text {inc }}(\boldsymbol{Q}, \omega)}{}
$$

Pair correlation function $G(r, t)$ useful for description of liquids

 Liquid (amorphhous) sample $\stackrel{\square}{\square}$ Crystalline sample Similar density, no LRO, only short range correlations

Static structure factor

Start with $\mathrm{I}(\mathrm{Q}, \mathrm{t})$ and split into into two parts:

$$
\begin{aligned}
I(\boldsymbol{Q}, t)= & \hbar \int S(\boldsymbol{Q}, \omega) e^{\omega t} \mathrm{~d} \omega \\
I(\boldsymbol{Q}, t)= & I(\boldsymbol{Q}, \infty)+I^{\prime}(\boldsymbol{Q}, t) \\
& S(\boldsymbol{Q}, \omega)=\frac{1}{\hbar} \delta(\omega) I(\boldsymbol{Q}, \infty)+\frac{1}{2 \pi \hbar} \mathrm{I}^{I^{\prime}(\boldsymbol{Q}, t) e^{-i \omega t} \mathrm{dt}} \\
& \square \text { Infinite time correlations }
\end{aligned}
$$

Static structure factor: Looking at deviations of the mean density $n(r)$

$$
\left.G^{\prime}(\boldsymbol{r})=\frac{1}{N} \int\left\langle n\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)-\left\langle n\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)\right\rangle\right)\left(n\left(\boldsymbol{r}^{\prime}\right)-\left\langle n\left(\boldsymbol{r}^{\prime}\right)\right\rangle\right)\right\rangle \mathrm{dr} r^{\prime}
$$

Elastic scattering from liquids

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=N\langle b\rangle^{2}\left(1+\int\left(g(\boldsymbol{r})-n_{0}\right) e^{i \boldsymbol{Q} r} \mathrm{dr}\right.
$$

$g(r)$: pair correlation function

$$
S(Q)=1+4 \pi \int_{0}^{\infty}\left(g(r)-n_{0}\right) \frac{\sin Q r}{Q r} r^{2} \mathrm{~d} r
$$

Static structure factor: Looking at deviations of the mean density $n(r)$

Static structure factor: Scattering function

$g(r)$ pair correlation function:
Deviations from mean density $n(r)$.

Limit $\mathrm{Q}->0 \quad \mathrm{~S}(\mathrm{Q}=0)=1$
Limit $\mathrm{Q}->\infty \quad \mathrm{S}(\mathrm{Q}->\infty)=\mathrm{n}_{0} \mathrm{~K}_{\mathrm{T}} \mathrm{K}_{\mathrm{B}} T \quad$ Isothemal compressibility

