

Physics with Neutrons I, WS 2015/2016

Lecture 4, 9.11.2015

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

2.6. Overview on neutron instrumentation (Spectroscopy, inelastic)

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

2.6. Overview on neutron instrumentation (inelastic scattering)

Cosinus Fourier transform S(Q, r) of $S(Q, \omega)$

Momentum transfer $Q < 1.5 Å^{-1}$

2ps<r< 350ns

2.6. Overview on neutron instrumentation (inelastic scattering)

Resonance spin echo (RESEDA @ MLZ)

Neutron Spin Echo: Static precession field.

Neutron Resonance Spin Echo: Two sychronized rotating HF fields separated by a zero field region!

Zero field is cheaper as compared to super-precise static fields

3.1 Definition of a scattering cross-section

Partial (double) differential cross-section

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'} = \frac{number\ of\ neutrons\ scattered\ into\ \mathrm{d}\Omega\ with\ final\ energy\ between\ E'\ and\ E' + \mathrm{d}E'}{incoming\ flux\ \Phi\ \mathrm{d}\Omega\mathrm{d}E'}$

Differential cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \int_0^\infty \left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)\mathrm{d}E$$

Total scattering cross-section

$$\sigma_{tot} = \int_{all \, directions} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \mathrm{d}\Omega$$

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

3.1 Definition of a scattering cross-section

Imaginary: Nuclear resonance, strong absorption, energy dependent

Real: energy independent

 $\sigma_{tot} = 4\pi b^2$

Table 1.3 Values of scattering lengths

Nuclide	Combined spin	b/fm	Nuclide	Combined spin	b/fm
¹ H	1	10.85	²³ Na	2	6.3
	0	-47.50		1 '	-0.9
² H	<u>3</u> 2	9.53	⁵⁹ Co	4	-2.78
	$\frac{1}{2}$	0.98		3	9.91

The values for H, Na, and Co are from Koester (1977), Abragam *et al.* (1975), and Koester *et al.* (1974) respectively. The spin values refer to the nucleus-neutron system.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\lambda \to \lambda'} = \frac{k'}{k} \left(\frac{m}{2\pi \hbar^{2}}\right)^{2} \left|\left\langle k'\lambda'|V|k\lambda \right\rangle\right|^{2}$$

2nd step: Energy conservation

$$\left(\frac{d^{2}G}{d\mathcal{S}dE'}\right)_{\mathcal{A} \Rightarrow \mathcal{A}'} = \frac{k'}{k} \left(\frac{m}{2\pi h^{2}}\right)^{2} \left|\langle k' \mathcal{A}' | V | k \mathcal{A} \rangle\right|^{2} \mathcal{S}\left(E_{\mathcal{A}} - E_{\mathcal{A}'} + E - E'\right)$$
$$\int \mathcal{S}\left(E_{\mathcal{A}} - E_{\mathcal{A}'} + E - E'\right) = 1$$

3rd step: Integration with respect to neutron coordinate r

$$\langle k' \lambda' | V | k \lambda \rangle = \sum_{j} V_{j}(k) \langle \lambda' | e^{ikR_{j}} | \lambda \rangle$$
, $V_{j}(k) = \int V_{j}(x_{j}) e^{(ikx_{j})} dx_{j}$, $k = k - k'$

Interaction is Fourier transform of the potential function

4th step: Ansatz: Delta function potential for single nucleus

Fermi pseudopotential:

$$V(x) = \alpha \delta(x)$$
$$V(x) = \frac{2\pi h^2}{m} b \delta(x)$$