

Physics with Neutrons I, WS 2015/2016

Lecture 7, 30.11.2015

MLZ is a cooperation between:

Organization

Visit FRM II : 21.12.2015

10:15 - 13:00 (after the lecture)

Valid ID necessary!!!

Exam (after winter term)

Registration: via TUM-Online between 16.11.2015 – 15.1.2015

Email: sebastian.muehlbauer@frm2.tum.de for date arrangement

 \Rightarrow 30min oral exam

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

3.3 Reminder: Coherent and incoherent scattering

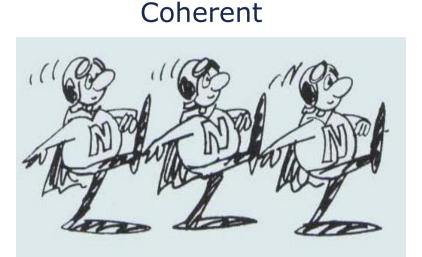
Assume a large sample with statistically variations of b_i

No correlations among *b*: $\overline{b_{j'}b_j} = (\overline{b})^2, j' \neq j$

$$\overline{b_{j'}b_j}=(\overline{b^2}), j'=j$$

Double differential crosssection spilts up into two terms:

$$\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{coherent} = \frac{\sigma_{coh.}}{4\pi} \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \left\langle \frac{e^{i\kappa R_{j'}(0)}e^{-i\kappa R_{j}(t)}}{e^{-i\kappa R_{j}(t)}} \right\rangle e^{-i\omega t} \mathrm{d}t$$


$$\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{incoherent} = \frac{\sigma_{inc.}}{4\pi} \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \left\langle \frac{e^{i\kappa R_{j}(0)}e^{-i\kappa R_{j}(t)}}{e^{-i\kappa R_{j}(t)}} \right\rangle e^{-i\omega t} \mathrm{d}t$$

$$\sigma_{coh.} = 4\pi\overline{b}^2 \qquad \sigma_{inc.} = 4\pi(\overline{b^2} - \overline{b}^2)$$

3.3 Reminder: Coherent and incoherent scattering

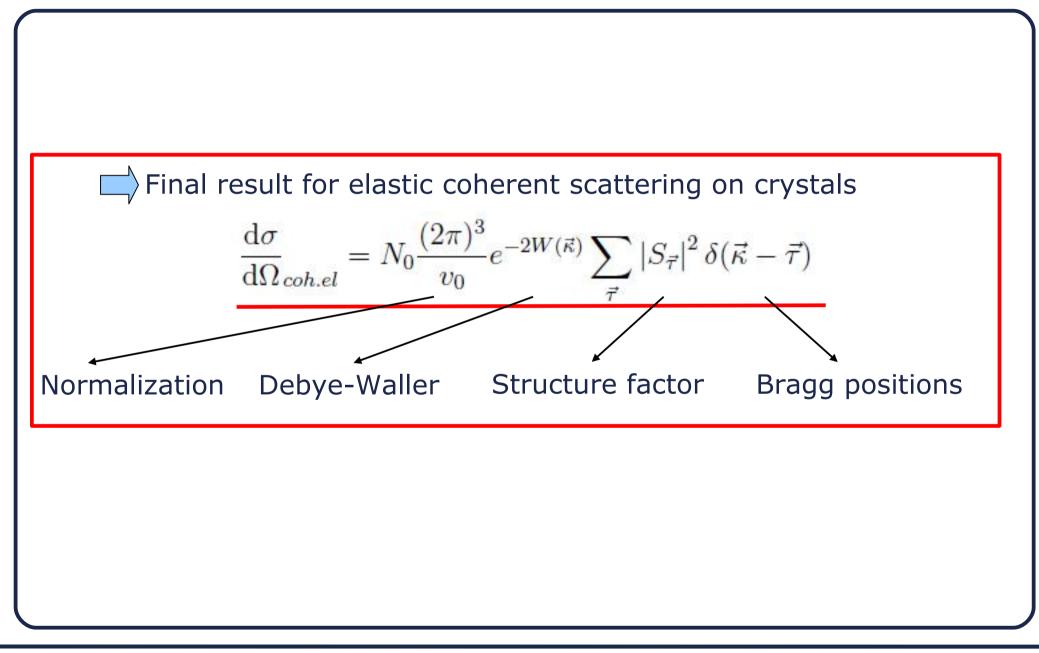
Spatial and temporal correlations between different atoms

 \Rightarrow Interference effects:

Given by average of b Bragg scattering

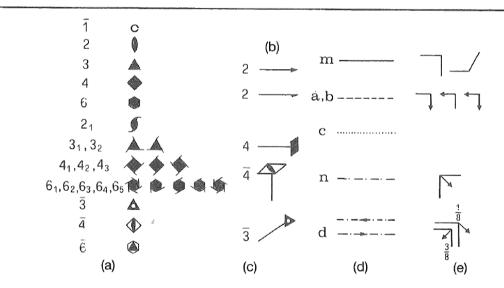
Incoherent

Spatial and temporal correlations between the same atom


ightarrow Constant in Q

Given by variations in b due to spin, disorder, random atomic motion....

Reminder: 4.1 Elastic scattering from a single crystal

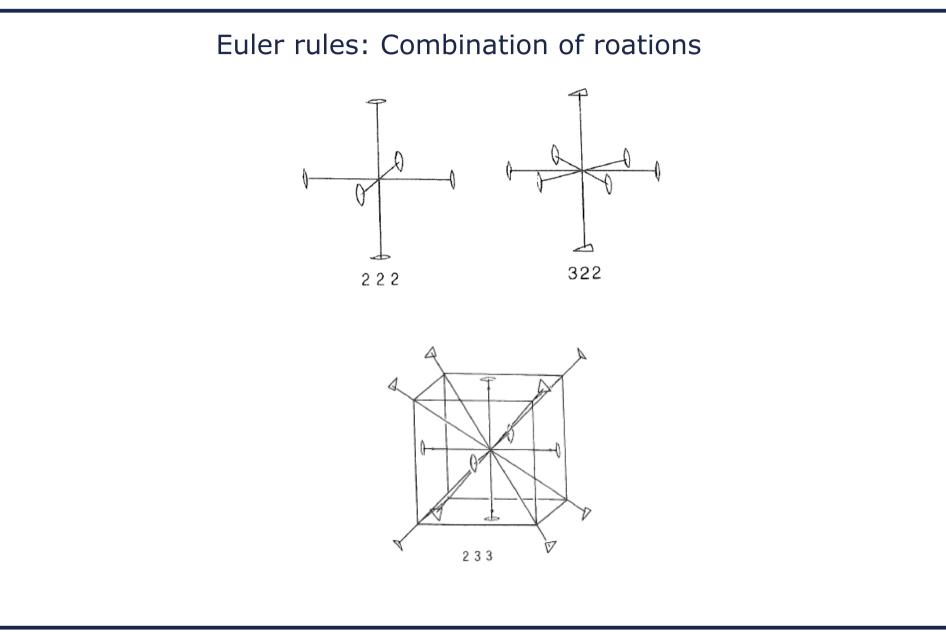




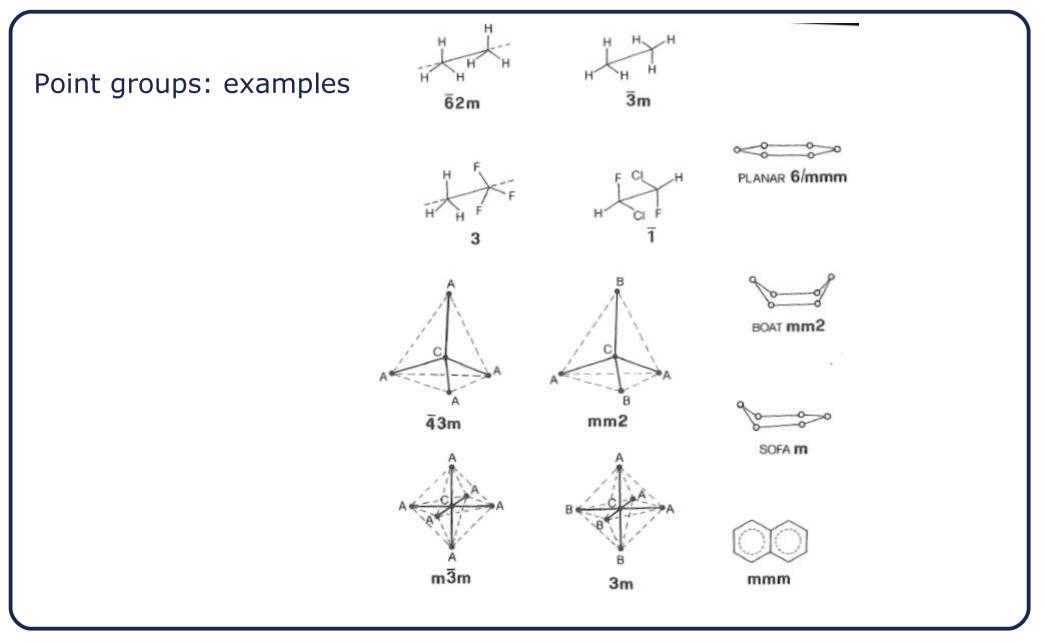
4.2 Appetizer Crystallography

Nomenclature rotation axes

Table 1.1. Graphical symbols for symmetry elements: (a) axes normal to the plane of projection; (b) axes 2 and 2_1 parallel to the plane of projection; (c) axes parallel or inclined to the plane of projection; (d) symmetry planes normal to the plane of projection; (e) symmetry planes parallel to the plane of projection

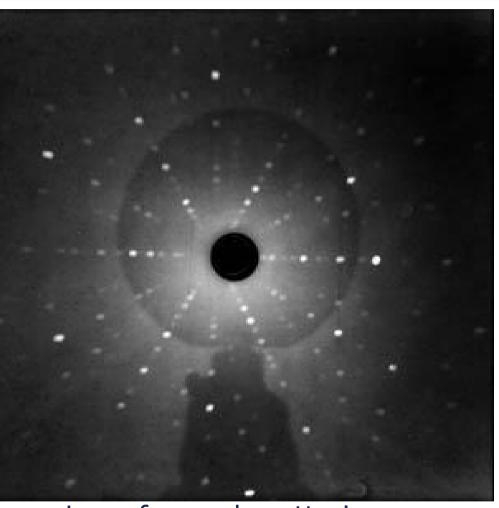


4.2 Appetizer Crystallography


4.2 Appetizer Crystallography: 32 Point groups

Crystal systems	Point groups			Laue classes	Lattice point
	Non-co symm	222.22	Centro- symmetric	0103363	groups
Triclinic	1		ī	ī	ī
Monoclinic	2	m	2/m	2/m	2/m
Orthorhombic	222	mm2	mmm	mmm	mmm
Tetragonal	٢4	4	4/m	4/m]4/mmr
	422	4mm, 42m	4/mmm	4/mmm	
Trigonal	٢3		3	<u>3</u>	3m
	32	3m	3m	3m	Jam
	[6	ē	6/m	6/m	
Hexagonal	622	6mm, <u>6</u> 2m	6/mmm	6/mmm	6/mmr
	[23		m3	mĴ	ī.
Cubic	432	43m	m3m	m3m	m3m

4.2 Appetizer Crystallography


4.2 Appetizer Crystallography: Point groups & Laue classes

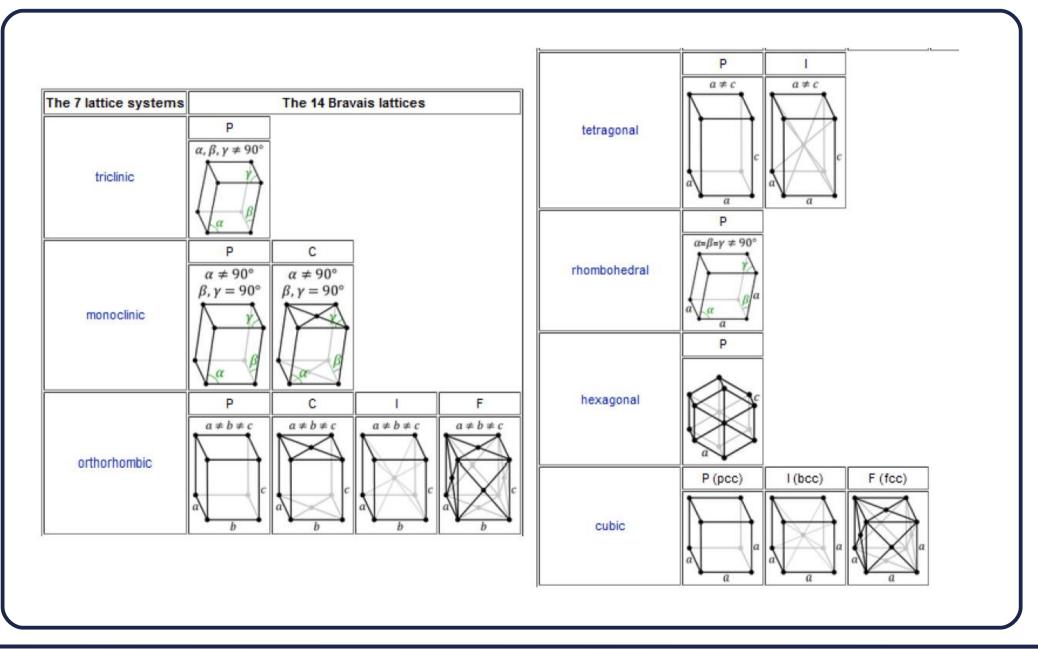
Crystal systems	Point groups			Laue	Lattice point
	Non-co symm	222.22	Centro- symmetric	classes	groups
Triclinic	1		Ī	Ī	Ī
Monoclinic	2	m	2/m	2/m	2/m
Orthorhombic	222	mm2	mmm	mmm	mmm
Tetragonal	۲4	4	4/m	4/m	4/mmr
	422	4mm, 42m	4/mmm	4/mmm].,
Trigonal	[3		3	3	3m
	32	3m	3m	3m	Jan
Hexagonal	6	ō	6/m	6/m]e/mmr
	622	6mm, <u>6</u> 2m	6/mmm	6/mmm]6/mmr
Cubic	23		m3	mŽ] ā
	432	43m	m3m	m3m	m3m

4.2 Appetizer Crystallography: Laue classes, Friedels law

Laue forward scattering Silicon single crystal, cubic, fcc, [111], three fold

4.2 Appetizer Crystallography: 7 crystal classes

Table 1.8.	The	conventional	types	of	unit cell	
------------	-----	--------------	-------	----	-----------	--

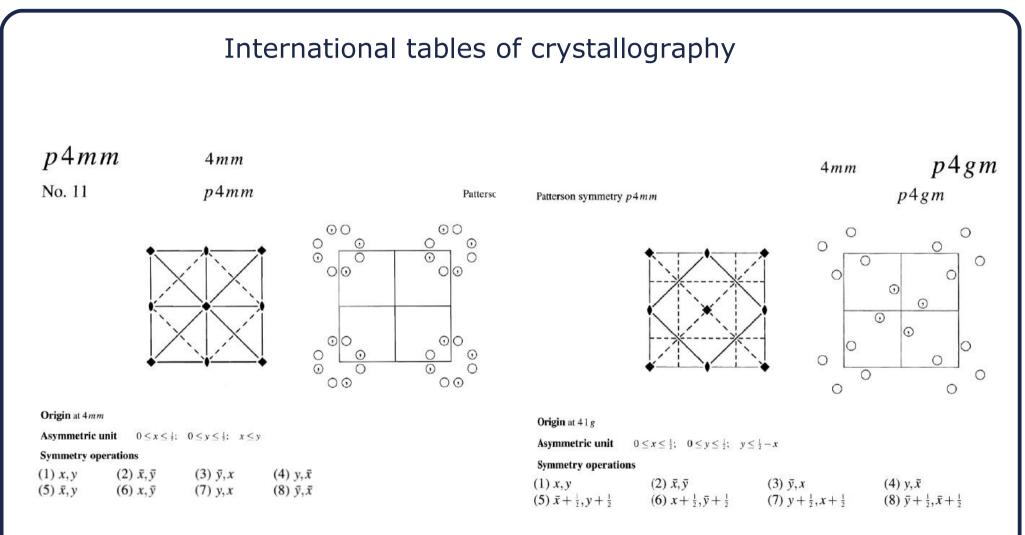

Symbol	Туре	Positions of additional lattice points	Number of lattice points per cell
>	primitive		1
h	body centred	(1/2, 1/2, 1, 2)	2
A	A-face centred	(0, 1/2, 1/2)	2
В	B-face centred	(1/2, 0, 1/2)	2
C	C-face centred	(1/2, 1/2, 0)	2
F I	All faces centred	(1/2, 1/2, 0), (1/2, 0, 1/2)	2
		(0, 1/2, 1/2)	4
R	Rhombohedrally centred (de scription with 'hexagonal axes')	(1/3, 2/3, 2/3), (2/3, 1/3, 1/3)	3

4.Crystallography

4.2 Appetizer Crystallography: 14 Bravais Lattices

4.2 Appetizer Crystallography:

320 space groups


Table 1.9. The 230 three-dimensional space groups arranged by crystal systems and point groups. Space groups (and enantiomorphous pairs) that are uniquely determinable from the symmetry of the diffraction pattern and from systematic absences (see p. 159) are shown in bold-type. Point groups without inversion centres or mirror planes are emphasized by boxes

Crystal system	Point group	Space groups
Triclinic	1 i	P1 P1
Monoclinic	[2]	P2, P2,, C2
	m	Pm, Pc, Cm, Cc
	2/m	P2/m, P21/m, C2/m, P2/c, P21/c, C2/c
Orthorhombic	222	P222, P222, P2,2,2, P2,2,2, C222, C222, F222, I222
	mm2	Pmm2, Pmc2 ₁ , Pcc2, Pma2 ₁ , Pca2 ₁ , Pnc2 ₁ , Pmn2 ₁ , Pba2 Pna2 ₁ , Pnn2, Cmm2, Cmc2 ₁ , Ccc2, Amm2, Abm2, Ama2 Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2
	mmm	Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcc Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm Fddd, Immm, Ibam, Ibca, Imma
Tetragonal	4	P4, P4, P4, P4, P4, I4, I4,
, on agona	Å	P4, 14
	4/m	P4/m, P42/m, P4/n, P42/n, I4/m, I41/a
	422	P422, P4212, P4122, P41212, P4222, P42212, P42212, P4322, P43212 1422, 14122
	4mm	P4mm, P4bm, P4 ₂ cm, P4 ₂ nm, P4cc, P4nc, P4 ₂ mc, P4 ₂ k I4mm, I4cm, I4,md, I4,ed
	ām	Páze, Páze, Páz ₁ m, Páz ₁ m, Páz ₁ e, Pám2, Pác2, Páb2, Pán Iám2, Iác2, Iá2m, Iá2d
	4/mmm	P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc P4/nmm, P4/ncc, P4 ₂ /mmc, P4 ₂ /mcm, P4 ₂ /nbc P4 ₂ /nnm, P4 ₂ /mbc, P4 ₂ mnm, P4 ₂ /nmc, P4 ₂ /ncm I4/mmm, I4/mcm, I4 ₁ /amd, I4 ₁ /acd
Trigonal-		
hexagonal	3	P3, P3, P3, R3
	32	P3, R3 P312, P321, P3,12, P3,21, P3,12, P3,21, R32
	3m	P3m1, P31m, P3c1, P31c, R3m, R3c
	3m	P31m, P31c, P3m1, P3c1, R3m, R3c
	6	P6, P61, P65, P63, P62, P64, P6
	6/m	P6/m, P63/m
	622	P622, P6122, P6222, P6222, P6422, P6322
	6mm	P6mm, P6cc, P6 ₃ cm, P6 ₃ mc
	6m 6/mmm	Pôm2, Pôc2, Pô2m, Pô2c P6/mmm, P6/mcc, P63/mcm, P63/mmc
Cubic	23	P23, F23, I23, P2,3, I2,3
	m3	Pm3, P <i>n</i> 3, Fm3, Fd3, Im3, Pa3, Ia3
	432	P432, P4232, F432, F4132, I432, P4332, P4132, I4132
	43m m3m	Pá3m, Fá3m, Iá3m, Pá3 <i>n,</i> Fá3 <i>c</i> , Iá3 <i>d</i> Pm3m, P <u>n3n,</u> Pm3n, Pn3m, Fm3m, Fm3 <i>c</i> , Fa3m, Fa3

4.2 Appetizer Crystallography:

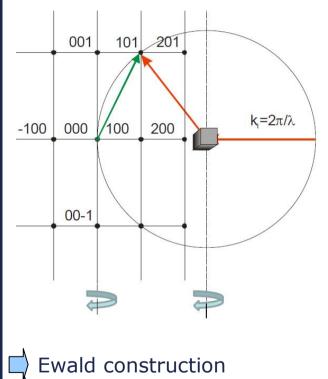
4. Diffraction

Reflections at same

scattering angle but

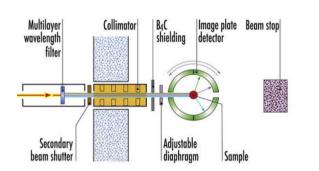
separated by time-of-flight

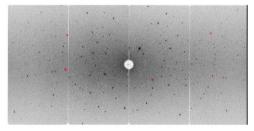
Time-of-flight


(TOF)

4.3 Diffraction: Monochromatic vs. TOF vs. Laue

Incident beam

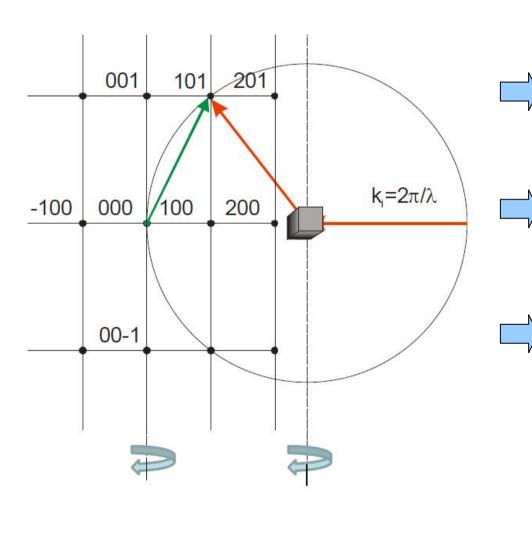

Monochromatic beam



- Less intensity
- Rocking curve gives
- intensity of Bragg peak
- 🔷 Clean data

- , Ewald construction for
- each wavelength in the beam
- Rocking curve distributed in time and detector
- Waste less neutrons

Laue (polychromatic beam)


- Essentially white beam More Bragg peaks (not
- distronger)
- Hard to get intensities
- Large background

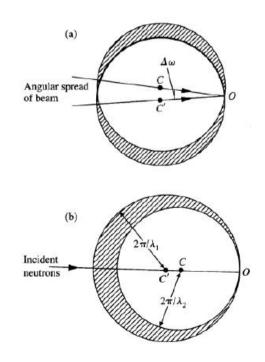
4. Diffraction

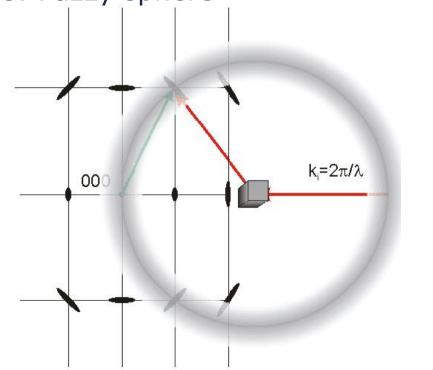
4.3 Diffraction: Ewald construction for single crystal diffraction

Ewald construction:

Sphere around center of crystal (in real space)

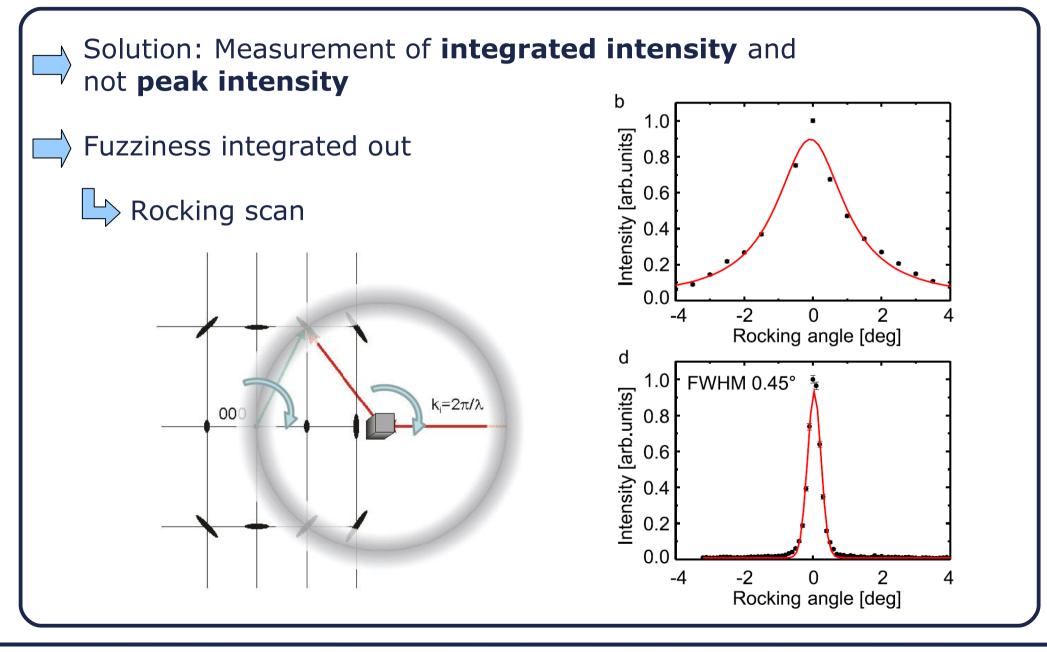
Origin of reciprocal space on transmitted beam at the edge of Ewald sphere


Rotation of crystal (real space) corresponds to a rotation of reciprocal space



4.3 Diffraction: Ewald construction including resolution effects

- Mosaic spread of the sample (no perfect crystal)
- Finite spread of incoming beam (wavelength spread)
 - Finite collimation of the incoming beam
 - \Box Ewald construction for real samples: Fuzzy sphere



4. Diffraction

4.3 Diffraction: Crystal rotation method

