

Physics with Neutrons I, WS 2015/2016

Lecture 7, 30.11.2015

MLZ is a cooperation between:

Visit FRM II : 21.12.2015

10:15 - 13:00 (after the lecture)

Valid ID necessary!!!

Exam (after winter term)

Registration: via TUM-Online between 16.11.2015 – 15.1.2015

Email: sebastian.muehlbauer@frm2.tum.de for date arrangement

 \Rightarrow 30min oral exam

3.3 Reminder: Coherent and incoherent scattering

Assume a large sample with statistically variations of b_i

No correlations among *b*: $\overline{b_{j'}b_j} = (\overline{b})^2, j' \neq j$

$$\overline{b_{j'}b_j}=(\overline{b^2}), j'=j$$

Double differential crosssection spilts up into two terms:

$$\begin{split} \left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{coherent} &= \frac{\sigma_{coh.}}{4\pi} \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \left\langle \frac{e^{i\kappa R_{j'}(0)} e^{-i\kappa R_{j}(t)}}{e^{-i\kappa R_{j}(t)}} \right\rangle e^{-i\omega t} \mathrm{d}t \\ \left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{incoherent} &= \frac{\sigma_{inc.}}{4\pi} \frac{k'}{k} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \left\langle \frac{e^{i\kappa R_{j}(0)} e^{-i\kappa R_{j}(t)}}{e^{-i\kappa R_{j}(t)}} \right\rangle e^{-i\omega t} \mathrm{d}t \\ \sigma_{coh.} &= 4\pi\overline{b}^2 \qquad \sigma_{inc.} = 4\pi(\overline{b^2} - \overline{b}^2) \end{split}$$

3.3 Reminder: Coherent and incoherent scattering

Spatial and temporal correlations between different atoms

 \Rightarrow Interference effects:

Given by average of b Bragg scattering

Incoherent

Spatial and temporal correlations between the same atom

ightarrow Constant in Q

Given by variations in b due to spin, disorder, random atomic motion....

Reminder: 4.1 Elastic scattering from a single crystal

4.2 Appetizer Crystallography

Nomenclature rotation axes

Table 1.1. Graphical symbols for symmetry elements: (a) axes normal to the plane of projection; (b) axes 2 and 2_1 parallel to the plane of projection; (c) axes parallel or inclined to the plane of projection; (d) symmetry planes normal to the plane of projection; (e) symmetry planes parallel to the plane of projection

4.2 Appetizer Crystallography

4.2 Appetizer Crystallography: 32 Point groups

Crystal systems	Point groups			Laue	Lattice	
	Non-co symm	entro- etric	Centro- symmetric	0103363	groups	
Triclinic Monoclinic Orthorhombic	1 2 222	m mm2 ∛	1 2/m mmm 4/m	1 2/m mmm 4/m	1 2/m mmm	
Tetragonal	422	4 4mm, ā2m	4/m 4/mmm 3	4/m 4/mmm 3]4/mmn	
Trigonal	32 [6]	3m ē	3 3m 6/m	3 3m 6/m]3m	
Hexagonal Cubic	622 23 432	6mm, ē2m 43m	6/mmm m3 m3m	6/mmm m3 m3m]6/mmn]m3m	

4.2 Appetizer Crystallography

4.2 Appetizer Crystallography: Point groups & Laue classes

Crystal systems	Point groups			Laue	Lattice	
	Non-co symm	entro- etric	Centro- symmetric	0105565	groups	
Triclinic	1		ī	ī	Ī	
Monoclinic	2	m	2/m	2/m	2/m	
Orthorhombic	222	mm2	mmm	mmm	mmm	
Tetragonal	4	4	4/m	4/m	4/mmr	
	422	4mm, 42m	4/mmm	4/mmm		
Trigonal	[3		3	3	Īām	
Ingonai	32	3m	3m	3m	Jan	
Hexagonal	6	ē	6/m	6/m		
	622	6mm, <u>6</u> 2m	6/mmm	6/mmm	6/mmr	
	[23		m3	m3	ī.	
Cubic	432	43m	m3m	mām	m3m	

4.2 Appetizer Crystallography: Laue classes, Friedels law

Laue forward scattering Silicon single crystal, cubic, fcc, [111], three fold

4.2 Appetizer Crystallography: 7 crystal classes

Ta	ble	1.8.	The	conventional	types	of	unit	cell
----	-----	------	-----	--------------	-------	----	------	------

2, 1, 2) 1 1/2) 2
2, 1, 2) 2 1/2) 2
1/2) 2
1/2) 2
2,0) 2
2, 0), (1/2, 0, 1/2) 2
1/2) 4
3, 2/3), (2/3, 1/3, 1/3) 3

4.2 Appetizer Crystallography: 14 Bravais Lattices

4.2 Appetizer Crystallography:

320 space groups

Table 1.9. The 230 three-dimensional space groups arranged by crystal systems and point groups. Space groups (and enantiomorphous pairs) that are uniquely determinable from the symmetry of the diffraction pattern and from systematic absences (see p. 159) are shown in bold-type. Point groups without inversion centres or mirror planet are emphasized by boxes

Cruetal Doint Space				
system	group	space groups		
Triclinic	1 1	P1 Pī		
Monoclinic	2 m 2/m	P2, P2 ₁ , C2 Pm, Pc, Cm, Cc P2/m, P2 ₁ /m, C2/m, P2/ <i>c</i> , P2 ₁ /c, C2/c		
Orthorhombic	[222] mm2 mmm	P222, P222, P222, P2,2,2, P2,2,2, C222, C222, F222, I222 I2,2,2,1 Pmm2, Pmc2, Pcc2, Pma2, Pca2, Pnc2, Pmn2, Pba2 Pna2, Pnn2, Cmm2, Cmc2, Ccc2, Amm2, Abm2, Ama2 Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2 Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca Pbam, Pcen, Pbcm, Pnnm, Pmmn, Pben, Pbca, Pnma Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm		
Tetragonal	4/m 4/m 422 4mm 4m 4m	P4, P4, P42, P43, I4, I4, P4, P4, P42, P43, I4, I4, P4/m, P42/m, P4/n, P42/n, I4/m, I41/a P422, P4212, P4122, P422, P4222, P42212, P4322, P43212 I422, I4322 P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc I4mm, I4cm, I4, md, I41cd P42m, P42c, P421m, P421c, P4m2, P4c2, P4b2, P4n2 I4m2, I4c2, I42m, I42d P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc P4/nmm, P4/ncc, P42/mcm, P42/ncm, P42/ncm P42/nnm, P42/nbc, P42mnm, P42/nmc, P42/ncm P42/nnm, I4/mcm, I41/amd, I41/acd		
Trigonal– hexagonal	3 3 3 3 3 3 3 3 3 3 3 5 6 6 6 7 7 6 6 7 7 6 7 7 6 7 7 7 7 7 7	P3, P3 ₁ , P3 ₂ , R3 P3, R3 P312, P321, P3 ₁ 12, P3 ₁ 21, P3 ₂ 12, P3 ₂ 21, R32 P3m1, P31m, P3c1, P31c, R3m, R3c P31m, P31c, P3m1, P3c1, R3m, R3c P5, P6 ₁ , P6 ₅ , P6 ₃ , P6 ₂ , P6 ₄ , P6 P6/m, P6 ₃ /m P622, P6 ₁ 22, P6 ₂ 22, P6 ₂ 22, P6 ₄ 22, P6 ₃ 22 P6mm, P6cc, P6 ₃ cm, P6 ₃ mc P6m2, P6c2, P62m, P62c P6/mmm, P6/mcc, P6 ₃ /mcm, P6 ₃ /mmc		
Cubic	23 m3 [432] 43m m3m	P23, F23, I23, P2 ₁ 3, I2 ₁ 3 Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3 P432, P4 ₂ 32, F432, F4 ₃ 22, I432, P4 ₃ 32, P4 ₁ 32, I4 ₁ 32 P43m, F43m, I43m, P43n, F43c, I43d Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c Im3m, Ia3d		

4.2 Appetizer Crystallography:

4.3 Diffraction: Monochromatic vs. TOF vs. Laue

Monochromatic beam

Time-of-flight

(TOF)

Laue (polychromatic beam)

- Ewald construction Less intensity Rocking curve gives intensity of Bragg peak
 - Intensity of Bragg peak
- Clean data

- Ewald construction for
- \rightarrow each wavelength in the beam
- Rocking curve distributed in time and detector
- Waste less neutrons

Essentially white beam More Bragg peaks (not

- v stronger)
- Hard to get intensities
- Large background

4.3 Diffraction: Ewald construction for single crystal diffraction

Ewald construction:

Sphere around center of crystal (in real space)

Origin of reciprocal space on transmitted beam at the edge of Ewald sphere

Rotation of crystal (real space) corresponds to a rotation of reciprocal space

4.3 Diffraction: Crystal rotation method

