Physics with neutrons 1

Sebastian Mühlbauer, sebastian.muehlbauer@frm2.tum.de Winter semester 2015/16 Exercise sheet 1 Due 2015–Okt–23

Lukas Karge, lukas.karge@frm2.tum.de, Tel.: 089-289-11774

EXERCISE 1.1

The Curie-Joliot hypothesis was introduced in the lecture. It was very controversial from the very beginning. In particular the high proton energy could not be explained: based on Compton-scattering a γ energy of $h\nu = 55$ MeV is needed to produce a 5.7 MeV proton. Such a high γ energy seems to be impossible since the energy of the Po- α radiation is only 5 MeV.

Prove and explain – based on the Compton process – the following expression, which casts the Curie-Joliot hypothesis into doubt:

$$E_p = \frac{2(h\nu)^2}{2h\nu + m_p c^2}$$

The proton rest mass is given by $m_p = 1.6726 \cdot 10^{-27}$ kg.

EXERCISE 1.2

Complement the following table, assuming nonrelativistic matter waves of neutrons and electrons:

	E [eV]	T [K]	λ [Å]	$v \mathrm{[m/s]}$	Q_{\max} [Å ⁻¹]
Light (Red Laser)			6320		
X-rays (Cu K_{α})					
Cold neutrons			6		
Thermal neutrons				2200	
Hot neutrons		2300			
Fission neutrons	$2.1 \cdot 10^{6}$				
Electrons				$1.57 \cdot 10^{6}$	

Fission neutrons are the ones created in the fission. Then the neutrons are converted to other (much lower) energies to be used in scattering experiments.

 Q_{max} is the theoretical maximal momentum transfer that can be reached in an scattering experiment, defined by

$$Q = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$$

where 2θ is the scattering angle.

EXERCISE 1.3

Draw the dispersion relations E [eV] vs. k [Å⁻¹] for light, neutrons and electrons in vacuum, for example with Matlab/Python. Mark the places of all kinds of radiation from Exercise 1.2 (except for the fission neutrons).

EXERCISE 1.4

The δ -function $\delta(f) = \langle \delta | f \rangle = f(0)$ can be defined as the limit of a function series d_l with

$$\delta(f) := \lim_{l \to 0} d_l(f) := \lim_{l \to 0} \langle d_l | f \rangle, \qquad \text{(limit after integration)(*)}.$$

1. Show that the function series

$$d_l(x) = \begin{cases} 1/l & -l/2 \le x \le l/2 \\ 0 & \text{sonst} \end{cases}$$

can be used to express the δ -function.

2. Using this definition of the δ -function, calculate its Fourier transform.

Note: The δ -function is not a proper function, due to (*). In mathematics such an object is called distribution.