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Exercise 10.1

Calculate 〈ζ2〉T and f2
DWF

for lead (θD = 88K), copper (θD = 315K), and diamond (θD = 1860K) at
T = 10K and T = 1000K with the low and high temperature approximations. Which material is most

useful as a monochromator? What can be done to improve the re�ectivity of copper monochromators?

Solution. The DWF form-factor contribution is given by

f2DWF = e−2W (Q) = e−
1
6
Q2〈ζ2〉

with the mean square atomic displacement 〈ζ2〉, which of course depends on the temperature of the

material, and can be approximated with di�erent models.

One model is the Debye model, assuming a spectrum of excitation frequencies for N atoms given by

Z(ω) =
9Nω2

ω3
max

,

where the cuto� frequency is expressed in terms of the Debye temperature ΘD:

ωmax =
kbΘD

~
.

For this model we get a mean square displacement of (Exercise 9)

〈ζ2〉 =
9~2

2kbΘDM
P (T ) =

9kbΘD

2Mω2
max

P (T ),

with a function P (T ) that depends on the temperature relative to ΘD.

In the high-temperature regime, T � ΘD, it is simply given by

P (T ) = 4
T

ΘD
=⇒ 〈ζ2〉 =

18~2kbT
k2bΘ

2
DM

.

In the low-temperature regime, T � ΘD, we get

P (T ) = 1 + 4
π2

6

(
T

ΘD

)2

=⇒ 〈ζ2〉 =
9~2

2kbΘDM
+

3π2~2k2bT 2

k3bΘ
3
DM

.

The �gure shows the DWF for the given materials and temperatures:
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Pb 10 K: h92i = 0.0130 8A2

Pb 1000 K: h92i = 0.5444 8A2

Cu 10 K: h92i = 0.0110 8A2

Cu 1000 K: h92i = 0.1385 8A2

C 10 K: h92i = 0.0098 8A2

C 1000 K: h92i = 0.0002 8A2

The vertical lines indicate the �rst allowed Bragg re�exion, which can be used for monochromatizing

neutrons. The most useful monochromator material obviously would be diamond. Lead, on the other

hand, is quite unsuitable. The re�ectivity of copper, which is a commonly used monochromator because

it is easy to produce large good quality single crystals, bene�ts strongly from cooling it down.

Exercise 10.2

Derive the representation

G(r, t) =
1

N

∑
j,j′

∫
〈δ
(
R− rj′(0)

)
δ
(
R + r− rj(t)

)
〉dR

from the expression for the intermediate scattering function

I(Q, t) =
1

N

∑
j,j′

〈e−iQ·rj′ (0)eiQ·rj(t)〉T

using the substitution

e−iQ·rj′ (0) =

∫
e−iQ·r

′
δ
(
r′ − rj′(0)

)
dr′.

Solution. G(r, t) is the so called space-time pair correlation function, transforming the reciprocal spa-
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tial space coordinates Q to real space r. With this ansatz we calculate

G(r, t) =
1

(2π)3

∫
dQ e−iQ·rI(Q, t) =

1

(2π)3

∫
dQ e−iQ·r

1

N

∑
j,j′

〈e−iQ·rj′ (0)eiQ·rj(t)〉T

=
1

N

∑
j,j′

∫
dQ e−iQ·r

〈
1

(2π)3

∫
dr′e−iQ·r

′
δ
(
r′ − rj′(0)

)
eiQ·rj(t)

〉
T

=
1

N

∑
j,j′

∫
dr′

〈
1

(2π)3

∫
dQ e−iQ·(r+r′−rj(t)) δ

(
r′ − rj′(0)

)〉
T

=
1

N

∑
j,j′

∫
dr′

〈
δ
(
r′ + r− rj(t)

)
δ
(
r′ − rj′(0)

)〉
T
,

where we used ∫
dQ e−iQ·r = (2π)3δ(r)

in the last step. G(r, t) describes the correlation between the atom j′ at time t = 0 at position r′ and
the atom j at a later time t at another position r′ + r, i.e. the probability of having two atoms j and
j′ in a well de�ned spatial and temporal correlation. G(r, t) may therefore be considered as the most

general description of the statics and dynamics of condensed matter on an atomic scale.

Exercise 10.3

Discuss and draw qualitatively the thermal occupation factors of 〈n〉 and 〈n+ 1〉 for a di�usion process

leading to quasi-elastic scattering and an excitation, i.e. inelastic scattering. Discuss (a) the classical

limit (high temperatures, kBT � E) and (b) the quantum limit (T → 0).

Note: Quasi-elastic scattering is represented by a Gaussian of the form e−
ω2

2σ2 , σ = 1meV. Inelastic

scattering is represented by a Gaussian of the form e−
(ω±ω0)

2

2σ2 , σ = 0.1meV, ω0 = 1meV.

Solution. The occupation factors are

〈n〉 =
1

e~ω/kT − 1
and 〈n+ 1〉 = 1 +

1

e~ω/kT − 1
=

e~ω/kT

e~ω/kT − 1
.

The ratio of the factors, and therefore of the scattering functions, for neutron energy gain and neutron

energy loss is given by

S(−Q,−ω) = e−~ω/kTS(Q, ω)

(cf. Furrer, page 14).

For the �classical� limit, T � E, where E is the characteristic energy scale of the problem (σ in the

quasi-elastic, ω0 in the inelastic case), we get that ~ω � kT and therefore 〈n〉 ≈ 〈n+1〉, i.e. a symmetric

cross section for Stokes- and anti-Stokes processes.

For the �quantum-mechanical� limit, T → 0, which makes the exponential very big. In this limit 〈n〉 → 0,
while 〈n+ 1〉 → 1.
The e�ect on the two scattering processes can thus be plotted (red = high temperature limit, symmetric;

blue = low temperature limit, asymmetric):
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