
Physics with neutrons 
Sebastian Mühlbauer, sebastian.muehlbauer@frm.tum.de

Winter semester /
Exercise sheet 
Due –Jan–

Lukas Karge, lukas.karge@frm.tum.de, Tel.: --

Exercise .

Derive the intermediate scattering function, pair correlation function, and the scattering law S(Q, ω) =
1

2π~
∫
dt e−iωtI(Q, t) for a single atom that oscillates harmonically in one dimension with a frequency ω0.

When you perform the Fourier transform, assume that the amplitude of the oscillation is very small.

Solution. We start with the intermediate scattering function in one dimension:

I(Q, t) =
1

N

∑
j,j′

〈e−iQrj′ (0)eiQrj(t)〉

For a single atom, we have N = 1 and therefore

I(Q, t) = 〈e−iQrj(0)eiQrj(t)〉 = 〈e−iQ(rj(0)−rj(t))〉.

Set ρ(t) = r(t)−r(0). For a harmonic oscillation ρ(t) = ρ0 cos(ω0t). Since the cosine is an even function,
r(t)− r(0) = r(0)− r(t). This gives us

I(Q, t) = 〈e−iQρ0 cos(ω0t)〉

As given in the exercise, the amplitude ρ0 is very small, so we can Taylor-expand the exponential:

I(Q, t) = 〈1− iQρ0 cos(ω0t)−
1

2
Q2ρ20 cos

2(ω0t) +
i

6
Q3ρ30 cos

3(ω0t)± ...〉.

All terms with odd powsers of the cosine vanish and therefore we are left with

I(Q, t) = 1− 1

6
Q2ρ20, using 〈cos2 x〉 = 1

3
.

Taking all terms into account, we arrive at

I(Q, t) = e−
1
6
Q2ρ20

(which is analogous to the derviation of the Debye-Waller factor).
The pair correlation function is

G(r, t) =
1

2π

∫
dQe−iQrI(Q, t) =

1

2π

∫
dQe−iQre−

1
6
Q2ρ20 =

√
3

2π

1

ρ0
exp

(
−3r2

2ρ20

)
.

The scattering law is

S(Q,ω) =
1

2π~

∫
dt e−iωtI(Q, t) =

1

2π~

∫
dQe−iωte−

1
6
Q2ρ20 = exp

(
−1

6
Q2ρ20

)
δ(~ω).





Exercise .

Prove that from the knowledge of the dispersion relation ωq it is possible to determine the force constants
kn using the relation

kn = −Ma

2π

∫ π/a

−π/a
ω2
q cos(nqa)dq.

Solution. From the dispersion relation we have

M

2
ω2 =

∑
n

kn(1− cos(n · qa)).

We multiply both sides with cos(m · ka) and perform an integration over the interval [−π/a, π/a]∫ π/a

−π/a
dq
M

2
ω2 cos(m · qa) =

∫ π/a

−π/a
dq
∑
n

kn(1− cos(n · qa)) cos(m · qa) = −2π

a
km.

The last relation holds, since

a

2π

∫ π/a

−π/a
dq cos(m · qa) cos(n · qa) = δmn.

Rearranging the terms, we get

km =
Ma

2π

∫ π/a

−π/a
dk ω2 cos(m · qa)

Exercise .

The acoustic phonon branches of many "simple" compounds are well explained by the sinusoidal disper-
sion relation derived in the lecture. The transverse acoustic phonon branches observed for germanium,
however, exhibit an unusual flattening of the dispersion relation upon approaching the zone boundary
(Fig. ). Germanium is a semiconductor with covalent bonds which are usually formed from two elec-
trons, one from each atom participating in the bond. These electrons tend to be partially localized
midway between the two atoms and constitute the so-called bond charge (Fig. ). Derive the phonon
dispersion for the one-dimensional chain illustrated in Fig.  by following the procedure for a diatomic
one-dimensional chain from the lecture.

Figure : Linear chain formed by alternating ion and bond charges. Bond charges are connected via
effective force constants β and β′ to neighboring ion and bond charges, respectively.





Figure : Dispersion relation of the lower transverse acoustic phonon branch measured for Ge at 80 K
along the [100] direction (after [Nellin and Nilsson ()]).

Solution. As sketched in Fig. , we denote the force constant between an atom of mass m and the
bond charge of mass me by β. In addition, we introduce the force constant β′ to describe the interaction
between two bond charges. In analogy to the diatomic one-dimensional chain, we get for the equations
of motion

mü2n =β(u2n+1 + u2n−1 − 2u2n), ()
meü2n+1 =β(u2n+2 + u2n − 2u2n+1 + β′(u2n+3 + u2n−1 − 2u2n+1) = 0, ()

where we set me = 0 since me � m. Inserting the ansatz

u2n = ξei(ωt+2nqa), u2n+ 1 = ηei(ωt+2nqa)

into the Eqs. () and () we get

mω2η = 2β
(
η − ξ cos

(qa
2

))
,

β
(
η cos

(qa
2

)
− ξ
)
+ β′ξ(cos(qa)− 1) = 0,

from which we obtain a relation between the amplitudes ξ and η:

ξ =
β cos(qa/2)

β + 2β′ sin2(qa/2)
.

Substituting this into Eq. () yields [Brüesch ()]

ω(q) =

√
1

m
· 2β(β + 2β′) sin2(qa/2)

β + 2β′ sin2(qa/2)
. ()

For q � π/a we get the limit

ω(q) =

√
β + 2β′

2m
qa =

√
c

ρ
q = vq,

where we use the same notation as for the linear chain with two different atoms. Fig.  shows dispersion
curves calculated from Eq. () for different ratios β′/β. We see that the acoustic phonon branch of Ge
can be modelled with the ration 0.5 < β′/β < 1.




