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Exercise .

Prove the lattice sum equation:∑
vmnp

exp(iQ · vmnp) =
(2π)3

VUC

∑
Ghkl

δ(Q−Ghkl)

Solution. Let v = ma1+na2+pa3 be a lattice vector in real space and G = ha∗1+ka∗2+la∗3 a reciprocal
lattice vector, with m,n, p, h, k, l integer. Also let Q = qa∗1+ra∗2+sa∗3 be an arbitrary scattering vector.
Now we can write the left hand side of the equation as∑

m,n,p

exp(iQ · v) =
∑
m,n,p

exp(2πi(qm+ rn+ sp))

(using a∗i · aj = 2πδij , the defining relation of the reciprocal lattice vectors).
This sum can further be separated in three parts:(∑

m

e2πiqm

)(∑
n

e2πirn

)(∑
p

e2πisp

)
,

of which we now only look at the first. Assume that the crystal has N (without loss of generality we
set N odd) unit cells in the direction of a1. Then the sum becomes

(N−1)/2∑
m=−(N−1)/2

e2πiqm =

(N−1)/2∑
m=0

e2πiqm +

(N−1)/2∑
m=0

e−2πiqm − 1 = (. . . ) =
sinNπq

sinπq
.

For large N , this expression effectively becomes a sum of delta functions at points where q is integer.
Applying this to all three dimensions, we get that Q = Ghkl, i.e.∑

vmnp

= C ·
∑
Ghkl

δ(Q−Ghkl)

with some constant C, which can be determined by integrating both sides over the unit cell:∫
cell
d3q

∑
vmnp

=

∫
cell
d3q C ·

∑
Ghkl

δ(Q−Ghkl) = C.

To evaluate the left-hand side, we use∫
cell
d3q eiq(v−v′) =

(2π)3

VUC
δvv′





and get

C =
(2π)3

VUC

∑
v

δvv′ =
(2π)3

VUC
.

Exercise .

Calculate the structure factor for a diamond lattice (an fcc lattice with a two-atomic basis at (0, 0, 0)
and (a/4, a/4, a/4)).

Solution. The atom positions for the diamond lattice are (0, 0, 0), (a/2, a/2, 0), (a/2, 0, a/2), (0, a/2, a/2),
(a/4, a/4, a/4), (3a/4, 3a/4, a/4), (3a/4, 0, 3a/4), (0, 3a/4, 3a/4).
The structure factor is defined as (Ghkl: reciprocal lattice vector, Rj : position of atom j in the unit
cell)

Fhkl =
∑
j

e−iGhkl·Rj

= e−i·0 + e−2πi(h+k)/2 + e−2πi(h+l)/2 + e−2πi(k+l)/2

= e−2πi(h+k+l)/4 + e−2πi(3h+3k+l)/4 + e−2πi(3h+k+3l)/4 + e−2πi(h+3k+3l)/4

= 1 + (−1)h+k + (−1)h+l + (−1)k+l + (−i)h+k+l + (−i)3h+3k+l + (−i)3h+k+3l + (−i)h+3k+3l

=
[
1 + (−1)h+k + (−1)h+l + (−1)k+l

] [
1 + (−i)h+k+l

]
.

This is the fcc structure factor ( for h, k, l all even or all odd,  else) modified by term that depends
on h+ k + l. The end result is:
Fhkl =

•  if h, k, l not all even or all odd

•  if h, k, l all even and h+ k + l divisible by 

•  if h, k, l all even and h+ k + l not divisible by 

• 4(1± i) if h, k, l all odd

Exercise .

In a powder diffraction experiment with a material having a cubic unit cell and using a neutron wave-
length of λ = 1.5Å, the first few Bragg peaks occur at the scattering angles Θ = 43.31◦, 50.44◦, 74.12◦,
89.93◦. Determine the structure (bcc, fcc, etc.) these peaks correspond to. Based on the information,
draw the reciprocal lattice with the allowed and forbidden Bragg peaks in the (hk0) and the (hhl) plane.
Draw the same reciprocal lattice planes for a diamond lattice.

Solution. The scattering angle is related to the lattice plane distance by the Bragg equation:

dhkl =
λ

2
sin

Θ

2
.

The dhkl for the given four angles are therefore d1 = .Å, d2 = .Å, d3 = .Å, and d4 =
.Å.





Also, for a cubic unit cell, the plane distances are related the the lattice constant by

dhkl =
a√

h2 + k2 + l2
.

Now we need to look at the first four allowed reflexes of the simple cubic, bcc, and fcc lattices, assign
them to the given d values. The structure is correct if we derive the same lattice constant a for all d
values.
simple cubic: all hkl are allowed reflexes

reflex dhkl a in Å
 a .
 a/

√
2 .

 a/
√

3 .
 a/2 .

⇒ no match!

bcc: only allowed reflexes for h+ k + l even
reflex dhkl a in Å
 a/

√
2 .

 a/2 .
 a/

√
6 .

 a/
√

8

⇒ no match!

fcc: only allowed reflexes for h, k, l all even or all odd
reflex dhkl a in Å
 a/

√
3 .

 a/2 .
 a/

√
8 .

 a/
√

11 .

⇒ match!

The structure is fcc with a lattice constant of a = 3.52Å (elemental Nickel).





FCC lattice planes with allowed reflexes:
(hk0)

h

k
(hhl)

h

l

Diamond lattice planes with allowed reflexes:
(hk0)

h

k
(hhl)

h

l

= allowed
= allowed, but weaker
= forbidden

Exercise .

. Sample holders for diffraction experiments are often made of materials that do not scatter co-
herently (why?). A possible choice is a zero-scattering alloy which can be a mixture of natural
titanium and zirconium. What is the composition of this alloy? Why is the term «zero-scattering»
misleading?

. A vanadium sample is a standard sample for calibration at many instruments. Can you think of
a reason for that?

Solution. . In diffraction experiments, most of the time the interesting quantity is the coherent
scattering of the sample (i. e. Bragg peaks). If the sample holder has Bragg peaks itself, subtraction
is not so easy and more error-prone. To obtain an alloy that does not scatter coherently, the mean
value of b of the components has to be zero:

cTi · bTi + cZr · bZr
!

= 0

cTi · (−3.438 fm) + (1− cTi) · 7.16 fm !
= 0

This is the case for cTi = .% and correspondingly cZr = .%.





This alloy does not scatter coherently (if the occupancies of the sites is really statistically mixed),
however it does scatter incoherently!

. Vanadium is one of the few elements that scatter almost only incoherently (the cross sections are
σcoh = . barn compared to σinc = . barn). Therefore, it scatters the same intensity in
every solid angle element dΩ. This measurement can therefore be used to calibrate the detector
efficiency, shadowing effects, etc.




