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Exercise 7.1

Insulating organo-metallic compound NiCl2 − 4SC(NH2)2 (know as DTN) demonstrates magnetoe-
lastic properties (Phys. Rev. B 77, 020404(R) (2008)). In an applied magnetic �eld its c-axis �rst
shrinks by 6 ·10−3% and then expands up to 2.2 ·10−2% in comparison to the zero �eld value. Calculate
whether it is possible to detect such a change in length of the c-axis using powder neutron di�ractometer
HRPT located in PSI (the instrumental resolution is equal to ∆θ/θ = 9.5 · 10−4 for Q = (002)). The
unit cell is tetragonal (space group I4 number 79) and the lattice parameters (zero magnetic �eld) are:
a = b = 9.558 Å, c = 8.981 Å.

Solution. In the magnetic �eld the c-axis shrinks by 6 ·10−3% and then expands by 2.2 ·10−2% (Figure
1, 2). The instrument resolution is given by ∆θ/θ = 9.5 · 10−4 ≈ 10−3. Since the unit cell is tetragonal,
we have
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The largest relative change between the shrinked and expanded c-axis is
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. Here we used arcsinx ≈ x for small x. Therefore, the e�ect cannot measured with this instrument.

Figure 1: Unit cell of tetragonal NiCl2 −
4SC(NH2)2.

Figure 2: Comparison of experimental c-axis
magnetostriction data as a function
of H for H||c with a model.

Exercise 7.2

Highly oriented pyrolytic graphite (HOPG) is used as one of the most e�cient monochromators for
thermal and cold neutrons. In addition, HOPG is used as a �lter for neutrons. Graphite has a hexago-
nal crystal structure. Along the [00l] direction, the crystal planes are regularly stacked thus exhibiting
the properties of a single crystal. Within the hexagonal planes, the atomic sheets are oriented randomly,
i.e. like a powder. Calculate the energies for the cut-o�s of the �rst few re�ections (002), (004), (006),
(101), (102), (103), (104), (105) and (106). The lattice constants are a = 2.4612 Å and c = 6.7079 Å.
The stacking along the c-direction is such that the peaks with (00l), l odd, are extinguished.

Solution. Neutron wavelength �lters are usually polycrystals with high coherent scattering crosssection
and low absorption cross-section. Such a polycrystal of su�cient thickness will scatter all neutrons
below a certain wavelength cuto� λc = 2d out of the beam (where d is the largest distance of lattice
planes for which Bragg scattering is allowed). One of the materials used as a �lter is Beryllium, whose
cuto� wavelength is λc = 3.9Å. If shorter neutron wavelengths should be transmitted, it is hard to
�nd crystals with such small lattice constants. Here HOPG can be used, which is not a polycrystal
but is well-ordered along the [00l] direction. In the perpendicular directions, the orientation of the
hexagonal planes is random. Therefore, using a HOPG with c oriented along the beam as a �lter, not
all wavelengths are scattered out of the beam, but only those that match a (hkl) re�ex with h or k
nonzero. (Note: for a three-dimensional single crystal, that would only be possible for one speci�c (hkl)
and its multiples; due to the rotational disorder, the Bragg condition can be ful�lled for all re�exes.) To
calculate the energies of scattered-out neutrons, we look at basic properties of the hexagonal system:
the base vectors are
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The modulus of a reciprocal lattice vector Ghkl = hb1 + kb2 + lb3 is
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From this, we can �nd the dhkl = 2π/|Ghkl| for a given re�ection in the hexagonal crystal system:
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and the Bragg angle ϑhkl betwenn the neutron path - along [001] - and the lattice planes for [hkl]:

ϑhkl =
π

2
− cos−1 Ghkl ·G00l

|Ghkl||G00l|
=
π

2
− cos−1 l/c√

4(h2 + k2 + hk)/(3a2) + l2/c2
.

The wavelength that is scattered out is then

λhkl = 2dhkl sinϑhkl.

Results:

h k l λ (Å) E(meV )

0 0 2 6.71 1.82
0 0 4 3.35 7.29
0 0 6 2.24 16.31
1 0 1 1.23 54.82
1 0 2 1.93 22.03

h k l λ (Å) E(meV )

1 0 3 2.13 18.10
1 0 4 2.07 19.12
1 0 5 1.92 22.21
1 0 6 1.75 26.68

In particular the (101) re�ection is notable: for a wavelength of 2.54 Å HOPG has a good transmission,
while 1.23 Å is �ltered out very well by this re�ex.

Exercise 7.3

Derive the Lorentz factor
L (θ) =

1

sin θ sin 2θ

The origin of the Lorentz factor is twofold:

1. The statistical distribution of the crystallites in
a polycrystalline sample has to be considered.

2. The detector covers only part of the Debye-
Scherrer cone, which describes the Bragg scat-
tering from polycrystalline materials. As
sketched in Figure 3, the wavevector k′ of the
scattered neutrons lies on a cone, known as
Debye-Scherrer cone, where the axis of the cone
is along the wavevector k of the incoming neu-
trons and θ is the Bragg angle.

Figure 3: Debye-Scherrer cone for Bragg scat-
tering from polycrystalline materials.

Solution. First we consider the statistical distribution of the crystallites in a polycrystalline sample.
The fraction of microcrystals oriented to ful�ll Bragg's law λ = 2d sin θ can be obtained by considering
Figure 4. All crystallites with reciprocal lattice vectors lying in the dotted surface area of a sphere with
radius τ contribute to the scattering. The active surface area amounts to 2πτ2 cos θdθ/4πτ2. Hence,
the total scattering for the Debye-Scherrer cone is given by

σcone ∝
∫ π/2

0
δ(k′ − k)cosθdθ, (1)

where δ(k′ − k) con�nes the integration to elastic scattering. Using the geometry sketched in Figure 3

we �nd
k′2 − k2 = τ2 − 2τk cosφ = τ2 − 2τk sin θ = (k′ + k)(k′ − k),
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where we used the relation θ = π/2− φ. Setting k′ ≈ k yields

k′ − k =
1

2k
(τ2 − 2τk sin θ). (2)

Combining Eqs. (1) and (2) yields

σcone ∝
∫ π/2

0
δ(τ2 − 2τk sin θ) cos θdθ. (3)

We solve the integral in Eq. (3) by the substituion x = 2τk sin θ:

σcone ∝
∫ π/2

0
δ(τ2 − x)

1

2τk
dx =

1

2τk
.

Setting τ = 2k sin θ from Bragg's law we �nd

σcone ∝
1

sin θ
. (4)

If the neutron detector with diameter d is at a distance r from the sample, it intercepts a fraction
q = d/2πr sin(2θ) of the neutrons in the cone. Multiplying σcone of Eq. (3) with the θ-dependent term
of q yields the �nal result for the Lorentz factor:

L(θ) =
1

sin(θ) sin(2θ)

Figure 4: Sketch showing the fraction of crystallites satisfying the Bragg condition.
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