Physics with neutrons 1

Sebastian Mühlbauer, sebastian.muehlbauer@frm2.tum.de
Winter semester 2015/16
Exercise sheet 7
Due 2015-Dec-04

Lukas Karge, lukas.karge@frm2.tum.de, Tel.: 089-289-11774

ExERCISE 7.1

Insulating organo-metallic compound $\mathrm{NiCl}_{2}-4 \mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}$ (know as DTN) demonstrates magnetoelastic properties (Phys. Rev. B $77,020404(\mathrm{R})(2008)$). In an applied magnetic field its c-axis first shrinks by $6 \cdot 10^{-3} \%$ and then expands up to $2.2 \cdot 10^{-2} \%$ in comparison to the zero field value. Calculate whether it is possible to detect such a change in length of the c-axis using powder neutron diffractometer HRPT located in PSI (the instrumental resolution is equal to $\Delta \theta / \theta=9.5 \cdot 10^{-4}$ for $Q=(002)$). The unit cell is tetragonal (space group I_{4} number 79) and the lattice parameters (zero magnetic field) are: $a=b=9.558 \AA, c=8.981 \AA$.
Solution. In the magnetic field the c-axis shrinks by $6 \cdot 10^{-3} \%$ and then expands by $2.2 \cdot 10^{-2 \%}$ (Figure 1. 2. The instrument resolution is given by $\Delta \theta / \theta=9.5 \cdot 10^{-4} \approx 10^{-3}$. Since the unit cell is tetragonal, we have

$$
c^{*}=\frac{2 \pi}{V_{0}} a \times b=2 \pi \frac{a \times b}{a \times b \cdot c}=\frac{2 \pi}{\|c\|} .
$$

We look at $Q=(002)$ and get

$$
Q=(0,0,2)=\left(0,0, \frac{4 \pi}{\|c\|}\right)=\left(0,0,1 \cdot 3992 \AA^{-1}\right) .
$$

The largest relative change between the shrinked and expanded c-axis is

$$
\frac{\Delta d}{d}=6 \cdot 10^{-3} \%+2.2 \cdot 10^{-2} \%=2.8 \cdot 10^{-4}
$$

Now use Bragg's law and $d=2 \pi / Q$

$$
\sin \theta_{(002)}=\frac{\lambda}{2 \pi} \frac{Q}{2}=\frac{\lambda}{2 \pi} \frac{4 \pi}{2\|c\|}=\frac{\lambda}{\|c\|},
$$

which means that the peak shifts by

$$
\begin{aligned}
\frac{\Delta \theta}{\theta} & =\left|\frac{\arcsin \left(\frac{\lambda}{c+c \Delta d / d}\right)-\arcsin \left(\frac{\lambda}{c}\right)}{\arcsin \left(\frac{\lambda}{c}\right)}\right| \approx\left|\frac{\left(\frac{\lambda}{c+c \Delta d / d}\right)-\left(\frac{\lambda}{c}\right)}{\left(\frac{\lambda}{c}\right)}\right|=\left|\frac{1}{1+\Delta d / d}-1\right|=2.8 \cdot 10^{-4} \\
& \leq\left(\frac{\Delta \theta}{\theta}\right)_{\text {instrument }}=10^{-3} .
\end{aligned}
$$

. Here we used $\arcsin x \approx x$ for small x. Therefore, the effect cannot measured with this instrument.

Figure 1: Unit cell of tetragonal $\mathrm{NiCl}_{2}-$ $4 S C\left(\mathrm{NH}_{2}\right)_{2}$.

Figure 2: Comparison of experimental c-axis magnetostriction data as a function of H for $H \| c$ with a model.

EXERCISE 7.2

Highly oriented pyrolytic graphite (HOPG) is used as one of the most efficient monochromators for thermal and cold neutrons. In addition, HOPG is used as a filter for neutrons. Graphite has a hexagonal crystal structure. Along the [00l] direction, the crystal planes are regularly stacked thus exhibiting the properties of a single crystal. Within the hexagonal planes, the atomic sheets are oriented randomly, i.e. like a powder. Calculate the energies for the cut-offs of the first few reflections (002), (004), (006), $(101),(102),(103),(104),(105)$ and (106). The lattice constants are $a=2.4612 \AA$ and $c=6.7079 \AA$. The stacking along the c-direction is such that the peaks with ($00 l$), l odd, are extinguished.

Solution. Neutron wavelength filters are usually polycrystals with high coherent scattering crosssection and low absorption cross-section. Such a polycrystal of sufficient thickness will scatter all neutrons below a certain wavelength cutoff $\lambda_{c}=2 d$ out of the beam (where d is the largest distance of lattice planes for which Bragg scattering is allowed). One of the materials used as a filter is Beryllium, whose cutoff wavelength is $\lambda_{c}=3.9 \AA$. If shorter neutron wavelengths should be transmitted, it is hard to find crystals with such small lattice constants. Here HOPG can be used, which is not a polycrystal but is well-ordered along the [00l] direction. In the perpendicular directions, the orientation of the hexagonal planes is random. Therefore, using a HOPG with c oriented along the beam as a filter, not all wavelengths are scattered out of the beam, but only those that match a ($h k l$) reflex with h or k nonzero. (Note: for a three-dimensional single crystal, that would only be possible for one specific ($h k l$) and its multiples; due to the rotational disorder, the Bragg condition can be fulfilled for all reflexes.) To calculate the energies of scattered-out neutrons, we look at basic properties of the hexagonal system: the base vectors are

$$
\mathbf{a}_{1}=(a, 0,0), \mathbf{a}_{2}=(a / 2, a \sqrt{3} / 2,0), \mathbf{a}_{3}=(0,0, c)
$$

the reciprocal vectors are

$$
\mathbf{b}_{1}=2 \pi \frac{2}{a \sqrt{3}}(\sqrt{3} / 2,-1 / 2,0), \mathbf{b}_{2}=2 \pi \frac{2}{a \sqrt{3}}(0,1,0), \mathbf{b}_{3}=2 \pi \frac{1}{c}(0,0,1)
$$

The modulus of a reciprocal lattice vector $\mathbf{G}_{h k l}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}$ is

$$
\left|\mathbf{G}_{h k l}\right|=2 \pi \sqrt{\left(h^{2}+k^{2}+h k\right) \frac{4}{a^{2} 3}+\frac{l^{2}}{c^{2}}}
$$

From this, we can find the $d_{h k l}=2 \pi /\left|\mathbf{G}_{h k l}\right|$ for a given reflection in the hexagonal crystal system:

$$
\frac{1}{d_{h k l}}=\sqrt{\frac{4\left(h^{2}+k^{2}+h k\right)}{3 a^{2}}+\frac{l^{2}}{c^{2}}}
$$

and the Bragg angle $\vartheta_{h k l}$ betwenn the neutron path - along [001] - and the lattice planes for [$\left.h k l\right]$:

$$
\vartheta_{h k l}=\frac{\pi}{2}-\cos ^{-1} \frac{\mathbf{G}_{h k l} \cdot \mathbf{G}_{00 l}}{\left|\mathbf{G}_{h k l}\right|\left|\mathbf{G}_{00 l}\right|}=\frac{\pi}{2}-\cos ^{-1} \frac{l / c}{\sqrt{4\left(h^{2}+k^{2}+h k\right) /\left(3 a^{2}\right)+l^{2} / c^{2}}} .
$$

The wavelength that is scattered out is then

$$
\lambda_{h k l}=2 d_{h k l} \sin \vartheta_{h k l} .
$$

Results:

h	k	l	$\lambda(\AA)$	$E(\mathrm{meV})$
0	0	2	6.71	1.82
0	0	4	3.35	7.29
0	0	6	2.24	16.31
1	0	1	1.23	54.82
1	0	2	1.93	22.03

h	k	l	$\lambda(\AA)$	$E(m e V)$
1	0	3	2.13	18.10
1	0	4	2.07	19.12
1	0	5	1.92	22.21
1	0	6	1.75	26.68

In particular the (101) reflection is notable: for a wavelength of $2.54 \AA$ HOPG has a good transmission, while $1.23 \AA$ is filtered out very well by this reflex.

Exercise 7.3

Derive the Lorentz factor

$$
L(\theta)=\frac{1}{\sin \theta \sin 2 \theta}
$$

The origin of the Lorentz factor is twofold:

1. The statistical distribution of the crystallites in a polycrystalline sample has to be considered.
2. The detector covers only part of the DebyeScherrer cone, which describes the Bragg scattering from polycrystalline materials. As sketched in Figure 3, the wavevector \mathbf{k}^{\prime} of the scattered neutrons lies on a cone, known as Debye-Scherrer cone, where the axis of the cone is along the wavevector \mathbf{k} of the incoming neu-

Figure 3: Debye-Scherrer cone for Bragg scattering from polycrystalline materials.

Solution. First we consider the statistical distribution of the crystallites in a polycrystalline sample. The fraction of microcrystals oriented to fulfill Bragg's law $\lambda=2 d \sin \theta$ can be obtained by considering Figure 4 All crystallites with reciprocal lattice vectors lying in the dotted surface area of a sphere with radius τ contribute to the scattering. The active surface area amounts to $2 \pi \tau^{2} \cos \theta d \theta / 4 \pi \tau^{2}$. Hence, the total scattering for the Debye-Scherrer cone is given by

$$
\begin{equation*}
\sigma_{\text {cone }} \propto \int_{0}^{\pi / 2} \delta\left(k^{\prime}-k\right) \cos \theta d \theta \tag{1}
\end{equation*}
$$

where $\delta\left(k^{\prime}-k\right)$ confines the integration to elastic scattering. Using the geometry sketched in Figure 3 we find

$$
k^{\prime 2}-k^{2}=\tau^{2}-2 \tau k \cos \phi=\tau^{2}-2 \tau k \sin \theta=\left(k^{\prime}+k\right)\left(k^{\prime}-k\right),
$$

where we used the relation $\theta=\pi / 2-\phi$. Setting $k^{\prime} \approx k$ yields

$$
\begin{equation*}
k^{\prime}-k=\frac{1}{2 k}\left(\tau^{2}-2 \tau k \sin \theta\right) \tag{2}
\end{equation*}
$$

Combining Eqs. (1) and (2) yields

$$
\begin{equation*}
\sigma_{\text {cone }} \propto \int_{0}^{\pi / 2} \delta\left(\tau^{2}-2 \tau k \sin \theta\right) \cos \theta d \theta \tag{3}
\end{equation*}
$$

We solve the integral in Eq. (3) by the substituion $x=2 \tau k \sin \theta$:

$$
\sigma_{\text {cone }} \propto \int_{0}^{\pi / 2} \delta\left(\tau^{2}-x\right) \frac{1}{2 \tau k} d x=\frac{1}{2 \tau k}
$$

Setting $\tau=2 k \sin \theta$ from Bragg's law we find

$$
\begin{equation*}
\sigma_{\mathrm{cone}} \propto \frac{1}{\sin \theta} \tag{4}
\end{equation*}
$$

If the neutron detector with diameter d is at a distance r from the sample, it intercepts a fraction $q=d / 2 \pi r \sin (2 \theta)$ of the neutrons in the cone. Multiplying $\sigma_{\text {cone }}$ of Eq. (3) with the θ-dependent term of q yields the final result for the Lorentz factor:

$$
L(\theta)=\frac{1}{\sin (\theta) \sin (2 \theta)}
$$

Figure 4: Sketch showing the fraction of crystallites satisfying the Bragg condition.

