User Tools

Site Tools


panda:index

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
panda:index [2020/10/05 10:06] Astrid Schneidewindpanda:index [2021/11/02 12:44] (current) Astrid Schneidewind
Line 3: Line 3:
 Hi and welcome on PANDA! We hope that you will like our instrument.  Hi and welcome on PANDA! We hope that you will like our instrument. 
  
-PANDA team - Astrid, Igor, Alistair, Michal, Anton, Nikolaos, Chris and Sebastian+PANDA team - Astrid, Chris, Alistair, Mario, Michal, Anton, Nikolaos and Sebastian
 ---- ----
  
Line 12: Line 12:
 {{ :panda:news_1_.svg?nolink&120}} {{ :panda:news_1_.svg?nolink&120}}
  
 +  * Preparing the upcoming cycle with thermal neutrons: Installing Cu-111-mono to reach higher energy transers, and Si-111-mono.
 +  * We had a very successful I2NS workshop: https://workshops.ill.fr/event/252/ - thanks to all speakers, participants and organizers!.
 +  * MLZ has a slogan: Neutrons for Research and Innovation
 +  * Rajesh Dutta published his results on multiferroic Ba2CoGe2O7 under external magnetic fields. Thanks to  Rajesh and the team: https://doi.org/10.1103/PhysRevB.104.L020403. 
 +  * Please find the extended abstract here: https://arxiv.org/abs/2105.07716
 +  * Mario presented part of the PAND-AI work at CAMERA-workshop: “Autonomous Discovery in Science and Engineering”. Please find the extended abstract here: https://arxiv.org/abs/2105.07716 
 +  * We moved to the offices in building UYL. Please note our new phone numbers.
 +  * The first 2021 paper was published by Anton, Dmytro and coworkers. Congratulations and many thanks! https://link.aps.org/doi/10.1103/PhysRevB.103.024447
 +  * Igor left the Pand group. All the best, Igor!
 +  
  
-  * Mario Teixeira Parente started on 1.10.2020 - to work on optimizing search strategies with AI methods. Welcome Mario! 
-  * Bambus is grwoing - aligment of analyzer crystals and detectors is under work. 
-  * Anton moved to TU Dresden. The contact will be kept, he is still a part of the Panda team. 
-  * Shang Gao's paper on antiferromagnetic skyrmions published in Nature. Congratulations! https://doi.org/10.1038/s41586-020-2716-8 
-  * Chris Franz joined the Panda group as a new member.  
-  * Nature Communications Physics on Heavy fermion superconductor CeCoIn5 published by Yu Song, Rice University https://doi.org/10.1038/s42005-020-0365-8 | www.nature.com/commsphys 
-  * PRB on Magnetic anisotropy in ferromagnetic CrI3 published by Lebing Chen, Rice University https://doi.org/10.1103/PhysRevB.101.134418 
-  * PRX on Hidden-Order Symmetry in CeB6 published by P.Y. Portichenko, TU Dresden. https://doi.org/10.1103/PhysRevX.10.021010 
-  * Proposal round 27: 100 beamdays requested.  
-  * Nikolaos Biniskos joined the Panda team. 
-  * Michal Stekiel joined the Panda team. 
-  * Physical Review Research on Magnonic Weyl states in Cu2OSeO3 published by colleagues from Dresden and Jülich (L.-C. Zhang et al.) https://doi.org/10.1103/PhysRevResearch.2.013063 
-  * PRL on Heavily Hole-Doped KFe2As2 Superconductor published by Shoudong Shen, Fudan University Shanghai. https://doi.org/10.1103/PhysRevLett.124.017001 
 </WRAP> </WRAP>
  
Line 61: Line 58:
   * how to write a proposal   * how to write a proposal
   * how to prepare sample and sample holder   * how to prepare sample and sample holder
 +  * [[panda:startexp|how to start your experiment]]
   * [[panda:map|how to reach us]]   * [[panda:map|how to reach us]]
          
Line 109: Line 107:
 </WRAP> </WRAP>
  
 +<WRAP half column round box>
 +===== What's happening at PANDA =====
 +<html>
 +<a class="twitter-timeline" data-width="500" data-height="500" href="https://twitter.com/PandaMlz?ref_src=twsrc%5Etfw">Tweets by POandaMlz</a> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> 
 +</html>
 +</WRAP>
  
 <WRAP group> <WRAP group>
Line 119: Line 123:
  
  
 +  * Igor Radelytskyi - Infineon Technologies
   * Petr Cermak     Carles University Prague, Low temperature magnetic laboratory MGML      -        https://cermak.science/   * Petr Cermak     Carles University Prague, Low temperature magnetic laboratory MGML      -        https://cermak.science/
   * Benqiong Liu     Institute of Nuclear Physics and Chemistry: Mianyang, Sichuan, CN   * Benqiong Liu     Institute of Nuclear Physics and Chemistry: Mianyang, Sichuan, CN
-  * Enrico Faulhaber   MLZ - TU Munich, Nicos team    https://nicos-controls.org/ +  * Enrico Faulhaber   MLZ - TU München, Nicos team    https://nicos-controls.org/ 
-  * Niels Pyka+  * Niels Pyka - GSI, Subproject SIS100/SIS18 (SIS) 
   * Roland Schedler - Experimental Physik, Siemens   * Roland Schedler - Experimental Physik, Siemens
   * Martin Rotter - www.mcphase.de   * Martin Rotter - www.mcphase.de
-  * Peter Link MLZ - TU Munich, head of Neutron Optics  -  https://mlz-garching.de/wissenschaft-und-projekte/instrumentservice/neutronenoptik.html +  * Peter Link MLZ - TU München, head of Neutron Optics  -  https://mlz-garching.de/wissenschaft-und-projekte/instrumentservice/neutronenoptik.html 
-  * Michael Loewenhaupt - https://www.researchgate.net/profile/M_Loewenhaupt +  * Michael Loewenhaupt, TU Dresden - https://www.researchgate.net/profile/M_Loewenhaupt
-  *  +
-  *  +
-  *  +
-  *  +
-  * +
  
-  *  
      
 </WRAP> </WRAP>
 +
  
  
 <WRAP half column round box> <WRAP half column round box>
-===== Typical inelastic (TAS) neutron experiment  ===== +===== Long-term guests on Panda  ===== 
-{{ :panda:attach_1_.svg?nolink&120}}+{{ :panda:welcome.svg?nolink&120}}
  
-Before coming to the instrument  +List of long-term guests on Panda (when) and their current affiliation:
  
-Decide about the sample orientation you get only one plane+  * Anton Kulbakov (2019-2020), TU Dresden,  
 +  * Ben-Qiong Liu (2016-2018), now China Academy of Engineering Physics · Institute of Nuclear Physics and Chemistry, Mianyang 621900, People's Republic of China 
 +  * Iwan Sumirat (2014), now Leader of Neutron Triple Axis Spectroscopy Group, Neutron Beam Technology Division, Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency of Indonesia - BATAN, Indonesia 
 +  * Peng Cheng (2013/14), now Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 
 +  * Shiliang Li, now Professor at Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  
-Create hkl-intensity-list (reflection list). --info about forbidden reflections and the (relative) intensities of the allowed. - Have it available for starting the experiment.+   
 +</WRAP>
  
-Mark the crystal direction on the sample holder 
  
-Mount the sample properly. Think about covering the glue or holder and about either fixing the sample by Al wire or mounting an Al foil bag around. 
- 
-Mark the crystal direction outside on the cryostat 
- 
-For magnets, sample mounting needs to be better than within 1°. Depending on the instrument, care that one crystal direction is parallel to the goniometer axis. 
- 
-Start experiment. Experiment name, sample name, give sample metadata to system 
- 
-Align the sample 
- 
-  * move instrument to elastic position 
-  * calculate (hkl) of a strong allowed refelction in your scattering plane for your kf 
-  * if there is no allowed reflection within the available q-range, think about removing the filter and orient at  
-  * move stt/a4 to scattering angle 
-  * rotate sample for 181° minimum (sometimes SE will hinder you, then take what you get) 
-  * you should find at least one reflection, and the angles between refelctions should represent the symmetry of the crystal 
-  * if there are more reflections than expected or the angles are wrong: filter forgotten? more than one grain? - think and decide  
-  * if ok - move sth/a3 to maximum of the reflection. Take the one better suited for SE/other constraints  
-  * go to maximum of the peak, define sth/a3 for the reflection [panda: setalign((h,k,l), nn)] 
-  * gonio-scan in the related direction, go to max. 
-  * check height 
-  * repeat gonio-scan, until there is no relevant change 
-  * check the lattice parameter. Care that horizontal focus is flat for this scan. 
-  * adjust lattice parameter 
-  * check gonio, height, lattice parameter iteratively up to no relevant changes occur. care about foci 
-  * after last lattice parameter scan, define sth/a3 
-  * claculate orthogonal reflection 
-  * go there, you should find it immediately 
-  * gonio-scan, lattice parameter iteratively (remember foci. height should be ok) 
-  * adjust lattice patametr, fix gonios 
-  * in case sth/a3 does not fit perfectly for both reflections, decide about a compromise depnding on you measureing goal 
-  * check lattice parameters at the temperature you want to measure 
-  * start first inelastic scans 
- 
-Good luck!!!! 
- 
-</WRAP> 
  
 </WRAP> </WRAP>
  
panda/index.txt · Last modified: 2021/11/02 12:44 by Astrid Schneidewind