User Tools

Site Tools


panda:publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revisionBoth sides next revision
panda:se:list_of_publications [2020/07/08 17:22] – created Astrid Schneidewindpanda:se:list_of_publications [2020/07/09 07:11] Christian Franz
Line 1: Line 1:
-Magnonic Weyl states in Cu2OSeO3. L.-C. Zhang et al.Phys. Rev. Research 2, 013063 (2020)  DOI: 10.1103/PhysRevResearch.2.013063+====2020==== 
 + 
 +//Magnonic Weyl states in Cu2OSeO3//. L.-C. Zhang et al. **Phys. Rev. Research** 2, 013063 (2020)  https://doi.org/10.1103/PhysRevResearch.2.013063 
 + 
 +//Magnetic anisotropy in ferromagnetic CrI3//. Lebing Chen et al. **PRB** B 101, 134418 (2020)  https://doi.org/10.1103/PhysRevB.101.134418  
 + 
 +//Nature of the spin resonance mode in CeCoIn5//. Yu Song et al. **Nature Communications Physics**  https://doi.org/10.1038/s42005-020-0365-8 
 + 
 +//Neutron Spin Resonance in the Heavily Hole-Doped KFe2As2 Superconductor//. Shoudong Shen et al. **PRL** 124, 017001 (2020) https://doi.org/10.1103/PhysRevLett.124.017001 
 + 
 +//Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6//. P. Y. Portnichenko et al. **PRX** https://doi.org/10.1103/PhysRevX.10.021010 
 + 
 +//Ultrasmall Moment Incommensurate Spin Density Wave Order Masking a Ferromagnetic Quantum Critical Point in NbFe2//. P. Niklowitz et al. **PRL** https://doi.org/10.1103/PhysRevLett.123.247203 
 + 
 +Added by CF: //Anisotropic effect of a magnetic field on the neutron spin resonance in FeSe//, Tong Chen et al. **Phys. Rev. B** 101, 140504 https://doi.org/10.1103/PhysRevB.101.140504 
 + 
 +//Neutron scattering study of commensurate magnetic ordering in single crystal CeSb2//, Benqiong Liu et al., **Journal of Physics: Condensed Matter** (accepted manuscript)  
 + 
 + 
 + 
 +====2019==== 
 + 
 +//Rearrangement of Uncorrelated Valence Bonds Evidenced by Low-Energy Spin Excitations in YbMgGaO4//, Yuesheng Li et al., **Phys. Rev. Lett.** 122, 137201 https://doi.org/10.1103/PhysRevLett.122.137201 
 + 
 +//Magnetoelastic hybrid excitations in CeAuAl3//, Petr Čermák et al., **PNAS** https://doi.org/10.1073/pnas.1819664116 
 + 
 +//Unconventional Antiferromagnetic Quantum Critical Point in Ba(Fe0.97Cr0.03)2(As1−xPx)2//, Wenliang Zhang et al., **Phys. Rev. Lett.** 122, 037001 https://doi.org/10.1103/PhysRevLett.122.037001 
 + 
 + 
 +====2018==== 
 + 
 +//Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4//, Zhen Ma et al., **Phys. Rev. Lett.** 120, 087201, https://doi.org/10.1103/PhysRevLett.120.087201 
 + 
 + 
 +====2017==== 
 + 
 +//4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2//, M.E. Zayed et al.,** Nature Physics**  13, pages962–966(2017), https://doi.org/10.1038/nphys4190 
  
-Magnetic anisotropy in ferromagnetic CrI3. Lebing Chen et al, PRB B 101, 134418 (2020)  DOI: 10.1103/PhysRevB.101.134418  
  
-Nature of the spin resonance mode in CeCoIn5. Yu Song et al., Nature Communications Physics  https://doi.org/10.1038/s42005-020-0365-8 
panda/publications.txt · Last modified: 2021/08/11 19:34 by Astrid Schneidewind